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Machine Learning and Deep Learning
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Research Goals and Outcomes

- ldentify a deep learning workflow which can cluster herbarium sheet imagery
in @ way which signals species delimitation.
- ldeally clustering will be able to identify which specimen are most likely to
return significant results from DNA sequencing
- Eventually incorporating tools like Leaf Machine to automate, and leverage
large amounts of data from sources like iDigBio, GBIF
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Methods: Our Data
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Methods: Our Data
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ML and DL biases

Visual Heterogeneity

- Mounting techniques
- Age of specimens
- Imaging set-up




Methods: Preprocessing

- The goal is to remove any biasing information

- Camera settings, lighting conditions, labels are all features that obstruct morphological signal.
- Clustering on the segmentation masks captures the leaf morphological traits of the specimen,
while removing biasing information.
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Methods: Preprocessing

- Tools are in production for generating segmentation masks automatically
(Leaf Machine 2)

- Masks for this project were generated adapting a workflow from Generating
segmentation masks of herbarium specimens and a data set for training
segmentation models using deep learning (White and Dikow, et al 2020)
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Methods: Image Clustering

- The Deep Learning Algorithm that we are using for clustering is called Deep

Convolutional Embedded Clustering (Guo, Liu, et. al. 2017).

- (pretraining) A Deep Convolutional AutoEncoder is trained on the data.
- K-means is used in the latent space to identify n cluster centers.
- (clustering) A Clustering layer is then incorporated alongside the latent space which maps
embedded points in the latent space to a Student’s t-distribution with n-dimensions.
- KL Divergence is added to the loss function.
- Cluster centers are updated alongside AE weights.

- Autoencoders preserve local structure of data in the latent space.
- Convolutional Layers learn image features.



Methods: Image Clustering
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Results

tSNE Plot of Images in 10-D Embedded Space
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Results

tSNE Plot of Images in 10-D Embedded Space
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Results

tSNE Plot of Images in 10-D Embedded Space
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Results: Feature Maps

- Feature maps show promise

Extracting edge morphology
Extracting size, area, and texture
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- Used poor performing
traditional CNN architecture.

- ResNet/VGG are used in
segmentation software like
LeafMachine.
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Further Work

Alternative clustering methodology.

- ClusterGAN
- DAIC (Deep Adaptive Image Clustering)
- ASPC-DA (Adaptive Self-Paced Deep Clustering with Data Augmentation)

Morphology retaining data augmentation for pretraining step.

- Rotations
- Translations



Plug for OSS Project

No high level library for DL Image Clustering.
Current Implementation Workflow

- Read paper
- Hope and pray for author’s github link works .L
- Refactor (often times) depreciated code/Integration Hell

Goal Workflow

- Read paper

- Scikit-learn esque implementation SEQmEﬂtE}tIDﬂ

Models

Example: Segmentation Models
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