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Abstract. Free-boundary problems posed as variational inequalities, including obstacle prob-3
lems, appear in many scientific and engineering applications. In their finite element (FE) solution,4
localization of the free boundary may be a primary goal, and the geometrical localization error often5
dominates the overall numerical error. In this paper we implement, using the Firedrake FE library,6
new parallel adaptive mesh refinement strategies which generate accurate, high-resolution free bound-7
aries through h-refinement. We evaluate three approaches: (i) a tag-and-refine unstructured dilation8
operator method using discrete adjacency to the free boundary, (ii) a tag-and-refine method based9
on variable-coefficient diffusion, which thresholds a diffused active-set indicator function, and (iii) a10
metric-based mesh adaptation method which averages an anisotropic, Hessian-derived Riemannian11
metric with an isotropic metric computed from the diffused indicator in (ii). For (i) and (ii) classical12
a posteriori error estimators must be added within the computed inactive sets to attain convergence.13
These methods are evaluated, versus mesh complexity, by norm error and by geometrical localization14
using Jaccard distances for active sets. Applications include classical Laplacian obstacle problems15
and a shallow ice flow problem for predicting glaciation.16
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1. Introduction. The classical Laplacian obstacle problem [25] finds the equi-20
librium vertical displacement u of an elastic membrane over some domain Ω ⊂ R2.21
The membrane, attached with displacement g at the fixed boundary ∂Ω, is subjected22
to an applied force f , but it is also constrained to be above a given obstacle ψ. The23
strong formulation is thus a complementarity problem over Ω:24

−∇2u− f ≥ 0(1.1a)25

u− ψ ≥ 0(1.1b)26

(−∇2u− f)(u− ψ) = 0(1.1c)27

From a solution of (1.1), or rather of its weak form (below), we may identify the28
inactive and active sets, and the free boundary:29

(1.2) Iu = {x ∈ Ω : u(x) > ψ(x)}, Au = Ω \ Iu, Γu = Ω ∩ ∂Iu.30

Fig. 1. Solution, as wireframe, to a problem with a (hemi)spherical obstacle.
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2 G. S. FOCHESATTO AND E. BUELER

For the example shown in Figure 1, the obstacle ψ is an upper hemisphere, the31
active set Au (white mesh) is a disc, and the free boundary Γu is a circle. Note that u32
solves the Poisson equation −∇2u = f on Iu; this “interior condition” of the problem33
is the black mesh in the Figure. Note that both Dirichlet (u = ψ) and Neumann34
(∂u/∂n = ∂ψ/∂n) conditions apply along the unknown free boundary Γu.35

Another physical interpretation of problem (1.1) is that u models the water pres-36
sure, which cannot go below zero (ψ = 0), in a porous dam [2, for example]; see37
Example 4.3. Section 6 will present a different obstacle problem application with a38
highly-nonlinear operator. There the solution is the surface elevation of a glacier,39
which is constrained to be above the bedrock elevation on which the glacier sits.40

Problem (1.1) has a weak formulation which is a variational inequality (VI) [25]41
over a Sobolev space. Let Ω ⊂ Rd be the domain, d ≥ 1, let X = H1(Ω) [16], and42
suppose ψ ∈ X ∩ C(Ω̄). Let g : ∂Ω → R be continuous, with g ≥ ψ|∂Ω, and define43

(1.3) K = {u ∈ X : u ≥ ψ and u|∂Ω = g}44

as the admissible subset, which is closed and convex in X . For f ∈ L2(Ω), the VI45
formulation of (1.1) finds u ∈ K so that46

(1.4)
∫
Ω

∇u · ∇(v − u) ≥
∫
Ω

f(v − u) for all v ∈ K.47

In Section 2 we will recall the theory of such VIs, and extend the theory of their48
finite element (FE) approximation. We will generalize (1.4) from elliptic bilinear forms49
like (1.4) to coercive nonlinear operators over Banach spaces. In an FE approximation50
of such a VI the numerical solution uh will solve the same weak form, but over a51
finite-dimensional admissible set constructed on a mesh Th. Similarly to Cea’s lemma52
for PDEs [15], the norm errors ∥u − uh∥ can be bounded a priori, which we do by53
extending the Falk [17] technique to nonlinear operators. This will show how norm54
errors are controlled by FE space approximation properties, as usual, but subject to55
admissibility concerns, and with separation of active-set and inactive-set errors.56

Adaptive mesh refinement (AMR) uses a posteriori information from the numer-57
ical solution to strategically add mesh elements to increase the resolution and reduce58
the numerical error. However, for VI problems the simulation goal is often the accu-59
rate approximation of the sets in (1.2), attainability of which is problem-dependent.60

Example 1.1. Suppose Ω = (−1, 1), ψ(x) = 1 − x2, and g(x) = 0, but let f be61
constant: f(x) = α. The exact solution u of (1.4) is now easily calculated: u(x) =62
ψ(x) if α ≤ 2 and u(x) = 0.5αψ(x) > ψ(x) if α > 2. Thus for α ≥ 2 we have Au = Ω63
and Iu = ∅, while if α < 2 then Au = ∅ and Iu = Ω. This example shows that the sets64
(1.2) are not continuous functions of the data f of the problem. An easy modification65
of this example shows that the sets are also not continuous functions of ψ.66

The α = 2 case of Example 1.1 is degenerate [25], that is, the unconstrained67
solution happens to match the obstacle on a nonempty open set. Usable convergence68
results for FE approximations of the solution-dependent sets Au, Iu,Γu will usually de-69
pend upon problem nondegeneracy, and our examples are accordingly non-degenerate.70
Furthermore, the effectiveness of different AMR strategies for non-degenerate VI prob-71
lems depends strongly upon the measure (area or volume) of the active and inactive72
sets. This observation largely motivates the a posteriori approaches of this paper.73
For example, in certain problems, those elements which are significantly interior to74
the active set require no further computation or refinement. For such problems, with75
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examples given in Sections 5 and 6, if a solution is desired at higher resolution within76
the active set then this can be computed in post-processing by arbitrary interpolation77
of the obstacle data ψ.78

Example 1.2. Examples in Section 5 include three classical obstacle problems over79
square domains, and Figure 2 shows their active sets in black. For the left-hand80
problem, with a small active set and a long free boundary, our AMR methods refine81
a large fraction of the elements, namely the many elements which are close to the82
free boundary. The middle problem has a known exact solution; Example 5.3 shows83
convergence rates. For the right-hand problem, a clear performance benefit of our84
techniques, relative to uniform refinement, comes from avoiding refinement in the85
active set, an efficiency also exploited by the glaciation application in Section 6.86

Fig. 2. The area (measure) of the active set (black) can vary from small to large (left to right);
the middle image matches Figure 1.

In this work we consider only P1 element spaces over meshes of triangles or87
tetrahedra, and only h-refinement is addressed. However, VIs can be solved using88
p-refinement and higher-order elements, once nontrivial penalty-type modifications89
are made to the VI [24], but this is not attempted here. Also, while the classical90
obstacle problem (1.4) is equivalent to constrained minimization of a scalar objective,91
our analysis of FE errors for VI problems will not require such an objective, and our92
refinement strategies do not exploit one if available.93

Three AMR methods for VIs are introduced and detailed in Section 4. Our im-94
plementations use the Firedrake FE library [31] and generate conforming meshes with95
no hanging nodes. The first two methods are of tag-and-refine type, only differing by96
which elements are tagged, with skeleton-based refinement (SBR) [29] applied after97
tagging. These two methods also require complementary refinement of the PDE prob-98
lem in the inactive set to achieve convergence; see Section 3. The third method uses99
the Netgen and Animate [33] libraries for goal-oriented, metric-based mesh adapta-100
tion. Here is a high-level view of the new methods:101

UDO: The unstructured dilation operator method discretely identifies elements ad-102
jacent to the computed free boundary, employing a graph-based approach to103
tag neighboring elements for refinement. It generalizes the image processing104
operation of dilation [30] to unstructured meshes.105

VCD: The variable-coefficient diffusion method starts from a node-wise indicator106
function for the current computed active set. This indicator becomes the ini-107
tial iterate in a single step of a time-dependent heat equation problem, which108
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4 G. S. FOCHESATTO AND E. BUELER

smooths the indicator about the free boundary. This smoothed indicator is109
then thresholded for element tagging and refinement.110

AVM: The averaged-metric method computes an intermediate representation of the111
size, shape, and orientation of a new mesh, namely as a tensor-valued Rie-112
mannian metric [3]. Here the metric is an average of an anisotropic metric,113
from the Hessian of the computed solution [33], and an isotropic metric de-114
rived from the diffused active set indicator of the above VCD method. This115
method can maintain mesh complexity as it simultaneously resolves the free116
boundary and reduces errors in the inactive set.117

Note that the UDO and VCD methods generally produce similar results, but their118
motivation, and their control parameters, are sufficiently different to justify separate119
presentation.120

Example meshes are shown in Figure 3, generated by three levels of refinement121
using the above three methods, starting from a coarse uniform mesh, on the obstacle122
problem shown in Figure 2 (middle). All three schemes quickly concentrate effort123
around an accurately-localized free boundary, augmented by refinement as needed in124
the inactive set (Section 3). This kind of AMR accelerates convergence and reduces125
unnecessary computation.126

Fig. 3. Meshes from UDO (left), VCD (middle), and AVM (right) methods.

AMR for VI problems has only been lightly explored in the literature. The first127
published analysis may be [2], giving an error bound for the classical obstacle prob-128
lem in terms of local functionals associated with each element. The monograph by129
Suttmeier [32] covers a broader class of problems, including elasticity. For the classical130
obstacle problem, the constructable error estimators in these works require heuristic131
assumptions which may not hold in general. (See inequality (42) in [2], and the ap-132
proximation “(u − ψ)λh ≈ 0” in [32].) To our knowledge these approaches are not133
found in publicly-available implementations, nor are they as efficient as our strategies134
for computing high-resolution approximations to free boundaries.135

Our focus in this paper is on AMR performance, not solver performance. For136
all examples we used a fixed, VI-adapted, reduced-space Newton method with line137
search [7], implemented in PETSc [5]. Note that since the constraint u ≥ ψ makes138
VI problems nonlinear, an iterative solver is required even if the operator is linear139
as in (1.4). Such a numerical method cannot converge quadratically until the active140
and inactive sets stabilize on the given mesh. Then convergence will occur in one141
additional iteration, for a linear operator, or otherwise in a few iterations for a well-142
behaved nonlinear operator.143
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In summary, here are two principles for the AMR methods of this paper:144
1. Relative to uniform refinement, they exhibit significant improvements in con-145

vergence rate. This is measured by norms, or especially by free-boundary146
localization (geometrical) error (Section 5), per mesh degree of freedom.147

2. Their implementations (github.com/StefanoFochesatto/viamr) within the Fire-148
drake [26] FE library are parallel, well-documented, and easy-to-use.149

The paper is organized as follows: Section 2 provides a priori norm bounds150
for FE methods applied to VI problems; aspects of this material are new. Section151
3 addresses a posteriori error estimators which can be applied in the inactive set.152
Section 4 describes the three new AMR methods in more detail. Sections 5 and 6153
compare and discuss their performance on classical obstacle model problems and in a154
realistic glacier application. Table 1 states the few abbreviations used herein.155

AMR adaptive mesh refinement
AVM∗ averaged-metric
BR Babuška–Rheinboldt
CG continuous Galerkin
DG discontinuous Galerkin
FE finite element

GR gradient recovery
PDE partial differential equation
SBR skeleton-based refinement
UDO∗ unstructured dilation operator
VCD∗ variable-coefficient diffusion
VI variational inequality

Table 1
Abbreviations used in this paper. Stars indicate the new AMR methods.

2. Variational inequalities and their finite element approximations. We156
consider unilateral obstacle problems in Banach spaces. Let Ω ⊂ Rd, d ≥ 1, be157
a bounded, polygonal domain. Let X = W 1,p(Ω), p > 1, be the Sobolev space158
of measurable functions with pth-integrable weak gradients [16]. We will assume159
continuous problem data, with well-defined point values, so suppose ψ ∈ X ∩ C(Ω̄)160
and g ∈ C(∂Ω) satisfy g ≥ ψ|∂Ω. Define the closed and convex admissible subset161

(2.1) K = {v ∈ X : v ≥ ψ and v|∂Ω = g} ⊂ X ,162

same as in (1.3). Observe that generally ψ /∈ K.163
Let X ′ be the dual space of X , and denote the application of ω ∈ X ′ to v ∈ X by164

ω[v] ∈ R. The norm on X is denoted ∥·∥, and for X ′ the norm is ∥ω∥′ = sup∥v∥=1 |ω[v]|.165
Let F : K → X ′ be a given operator, generally nonlinear, and let ℓ ∈ X ′ be given.166
(While F in Example 2.1 is defined on all of X , the problem in Section 6 shows how167
F might be defined only on K.) The VI associated to this data, a unilateral obstacle168
problem, finds u ∈ K so that169

(2.2) F (u)[v − u] ≥ ℓ[v − u] for all v ∈ K.170

The problems in this paper can be analyzed within the framework of coercivity171
and Lipschitz continuity. We say F is q-coercive, 1 < q <∞, if there is α > 0 so that172

173

(2.3) (F (v)− F (w))[v − w] ≥ α∥v − w∥q174

for all v, w ∈ K. Note that if F is q-coercive then it is also strictly monotone:175
(F (v)− F (w))[v − w] > 0 for v ̸= w. Let BR(0) be the open ball at 0 ∈ X of radius176
R > 0. We say F is Lipschitz on bounded subsets if there is C(R) > 0 so that177

(2.4) ∥F (v)− F (w)∥′ ≤ C(R)∥v − w∥178
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6 G. S. FOCHESATTO AND E. BUELER

for all v, w ∈ BR(0) ∩ K. If F satisfies (2.4) then it is continuous. From coercivity,179
strict monotonicity, and continuity of F it follows that a unique solution to (2.2) exists180
[25, Corollary III.1.8].181

Example 2.1. In the classical obstacle problem (1.4), over X = H1(Ω) =W 1,2(Ω),182
F (u)[v] =

∫
Ω
∇u · ∇v dx. This bilinear operator is 2-coercive because the Laplacian183

is uniformly elliptic [16], and it is Lipschitz over X with constant C = 1.184

Example 2.2. In the glacier model of Section 6, when the bedrock is flat and185
the surface mass balance is independent of elevation the VI problem (6.1) uses a186
4-Laplacian operator over transformed thicknesses u ∈ X = W 1,4(Ω): F (u)[v] =187 ∫
Ω
Γ|∇u|2∇u · ∇v dx where Γ > 0 is constant. This operator is 4-coercive [22, for188

example], and Lipschitz on bounded subsets of X .189

Note that if the inequality constraint in (2.2) were absent then the residual of the190
solution u would be zero (F (u)− ℓ = 0); this is the PDE case. However, for VI (2.2)191
we only have that F (u)− ℓ = 0 a.e. within an unknown inactive set Iu. The residual192
F (u) − ℓ ∈ X ′ might be highly-irregular in the active set Au, but it is nonnegative.193
In fact, the following lemma states the weak complementarity property associated to194
obstacle problems (2.2); compare strong-form complementarity (1.1).195

Lemma 2.3. [25, Theorem II.6.9]. Suppose u ∈ K solves (2.2). Then F (u)− ℓ =196
dµu is a positive Radon measure supported in Au. Thus for w ∈ X we have197

(2.5) (F (u)− ℓ)[w] =

∫
Au

w dµu.198

Now let Th be a shape-regular mesh partition (triangulation, etc.) of Ω [1, 15].199
Let Xh ⊂ X ∩C(Ω̄) be a conforming finite-dimensional FE subspace over Th. (Our ex-200
amples will be piecewise-linear over triangles and tetrahedra: Xh = P1.) Assume that201
there is gh ∈ Xh such that gh = g along ∂Ω. Let ψh ∈ Xh be the FE obstacle, which202
satisfies the compatibility requirement ψh ≤ gh along ∂Ω. Define the (nonempty) FE203
admissible set204

(2.6) Kh = {vh ∈ Xh : vh ≥ ψh and vh|∂Ω = gh|∂Ω}.205

Our FE method seeks uh ∈ Kh satisfying a VI problem which approximates (2.2):206

(2.7) F (uh)[vh − uh] ≥ ℓ[vh − uh] for all vh ∈ Kh.207

The same argument given for (2.2) shows that this has a unique solution uh. Define208

(2.8) Ihu = {x ∈ Ω : uh(x) > ψh(x)}, Ah
u = Ω \ Ihu , Γh

u = Ω ∩ ∂Ihu ,209

the numerical sets corresponding to (1.2), defined a posteriori from solving (2.7).210
Because Kh ⊂ Xh ⊂ X , we might regard (2.7) as a conforming FE method for211

(2.2). However, this is subtle for an obstacle problem as it depends on the relationship212
between ψ and ψh. If ψh is an interpolant of ψ then Kh ≈ K in some sense. Actually,213
one should distinguish three levels of increasingly “conforming” admissibility:214

i) Kh ̸⊂ K215
ii) Kh ⊂ K216
iii) Kh = K ∩ Xh217

Ciarlet [14, Figure 5.1.3] observed early on that situation i) generally applies for an218
interpolated obstacle ψh = Πhψ, e.g. for Xh = P1 and when ψ is not convex. Situation219
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ii) holds when ψh ≥ ψ, which can be imposed by using a monotone injection operator,220
e.g. “ψh = R⊕ψ” in the notation from [13]. (For related ideas, see [20] and the proof221
of Theorem 5.1.2 in [14].) The strongest condition iii) holds if ψh = ψ exactly, for222
example when ψ = 0 in the porous dam problems considered by [2], and in Section 6.223

In any case, the obstacle ψ is given as data for VI problem (2.2) over K. As224
illustrated in Section 5, point values of ψ can be evaluated as desired to better-225
represent uh within the numerical active set Ah

u. Over elements where there is active-226
set correctness, namely K ∈ Th such that K ⊂ Au∩Ah

u, the error e = u−uh = ψ−ψh227
can simply be regarded as unimportant. Alternatively, the approximation ψh ≈ ψ can228
be improved as needed by better interpolation of the data ψ. As the goal for AMR229
is to more-accurately solve the FE problem, refinement within a stabilized active set,230
once an accurate free boundary has been found, is wasted effort.231

These ideas are already implicit in a priori bounds for FE error in VI problems.232
The following theorem generalizes the Falk bound [17]; see also [14, Theorem 5.1.1].233
It can be extended further to address Fh ≈ F [12, Theorem 6.3], but we will not need234
such an operator approximation for our examples.235

Theorem 2.4. For 1 < q < ∞, define the conjugate exponent q′ = q/(q − 1).236
Assume that F is q-coercive and Lipschitz on bounded subsets of its domain. Suppose237
u ∈ K solves (2.2) and uh ∈ Kh solves (2.7). Let Rh = max{∥u∥, ∥uh∥}. Then there238
is a constant c(Rh) > 0, not otherwise depending on u or uh, so that239

∥u− uh∥q ≤ 2

α

(
inf
v∈K

∫
Au

(v − uh) dµu + inf
vh∈Kh

∫
Au

(vh − ψ) dµu(2.9)240

+ c(Rh) inf
vh∈Kh

∥vh − u∥q
′
)
.241

Proof. For arbitrary v ∈ K and vh ∈ Kh, rewrite (2.2) and (2.7) as F (u)[u] ≤242
F (u)[v]+ℓ[u−v] and F (uh)[uh] ≤ F (uh)[vh]+ℓ[uh−vh], respectively. It follows from243
these inequalities, and q-coercivity of F , that244

α∥u− uh∥q ≤ (F (u)− F (uh)) [u− uh](2.10)245

= F (u)[u] + F (uh)[uh]− F (u)[uh]− F (uh)[u]246

≤ F (u)[v] + ℓ[u− v] + F (uh)[vh] + ℓ[uh − vh]247

− F (u)[uh]− F (uh)[u]248

= F (u)[v − uh]− ℓ[v − uh] + F (uh)[vh − u]− ℓ[vh − u]249

= (F (u)− ℓ) [v − uh] + (F (u)− ℓ) [vh − u]250

+ (F (u)− F (uh)) [u− vh]251

Since u, uh ∈ BRh
= {w ∈ X : ∥w∥ ≤ Rh}, by the Lipschitz assumption (2.4) there252

is C(Rh) > 0 so that the last term from (2.10) has bound253

(2.11) (F (u)− F (uh)) [u− vh] ≤ C(Rh)∥u− uh∥∥u− vh∥.254

Now use Young’s inequality with ϵ > 0 [16, Appendix B.2] on (2.11). We have:255

α∥u− uh∥q ≤ (F (u)− ℓ) [v − uh] + (F (u)− ℓ) [vh − u](2.12)256

+ C(Rh)
(
ϵ∥u− uh∥q + C̃(ϵ)∥u− vh∥q

′
)

257
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where C̃(ϵ) = (ϵq)−q′/qq′
−1. Choose ϵ > 0 so that C(Rh)ϵ ≤ α/2. Then258

(2.13)
α

2
∥u−uh∥q ≤ (F (u)− ℓ) [v−uh]+ (F (u)− ℓ) [vh−u]+C(Rh)C̃(ϵ)∥u−vh∥q

′
259

Apply Lemma 2.3 and take infimums to show (2.9).260

Consider the unconstrained PDE case of (2.9), namely when Au = ∅. In this261
case the bound is simply Cea’s lemma (quasi-optimality) for q-coercive operators:262
∥u − uh∥ ≲ infvh∈Kh

∥vh − u∥1/(q−1). It is standard in FE theory [1, 15] to address263
this bound by solution regularity and interpolation theory.264

If ψh ≥ ψ then Kh ⊂ K, and so the first term on the right of (2.9) can be replaced265
by zero. In this case bound (2.9) adds a single term to Cea’s lemma, which is nonzero266
when vh ∈ Kh is blocked by ψh from descending close to the continuum obstacle ψ267
in the active set Au. Thus this term is large if ψh is substantially above ψ in Au, or268
if dµu is large in Au. However, if the FE method has generated a numerical active269
set which is accurate, Ah

u ≈ Au, the errors in the active set are irrelevant because the270
data ψ is available to the solver.271

A priori error bound (2.9) is further clarified in the p = 2 and q = q′ = 2 case,272
the classical obstacle problem. The bound can then be split between integrals over273
the (exact) active set and inactive sets.274

Corollary 2.5. Suppose all the hypotheses of Theorem 2.4. Assume that p =275
q = 2, and that ψ ∈ C1(Ω). Up to constants which depend on u and uh, we may write276
the a priori bound with four integrals,277

∥u− uh∥2 ≲ inf
v∈K

∫
Au

(v − uh) dµu + inf
vh∈Kh

∫
Au

(vh − ψ) dµu(2.14)278

+ inf
vh∈Kh

(∫
Au

|∇vh −∇ψ|2 dx+

∫
Iu

|∇vh −∇u|2 dx
)

279

Proof. Apply Poincare’s inequality to the final term in (2.9).280

Consider the first two integrals in bound (2.14) from the point of view of AMR.281
Their size is determined partly by the action of F on the continuum obstacle, and282
partly by the source term ℓ. However, because they are over the active set Au,283
neither integral, nor the third Au integral, requires mesh refinement so as to improve284
the quality of the FE solution, as long as the mesh and solver have accurately located285
the free boundary. This observation suggests why the primary goal of AMR for VIs286
should be to generate close approximation Γh

u ≈ Γu. Computation expended on287
better approximation of the data ψ in Au can be avoided if the free boundary is288
accurately resolved. This is easiest to exploit within the class of unilateral obstacle289
problems described in Appendix A, which includes the ψ = 0 case of the classical290
obstacle problem (1.4) and the glacier problem of Section 6. In such problems one291
may preprocess the data, noting all the areas where the source term is negative, and292
then systematically avoid unnecessary active set refinement.293

However, in order for Γh
u ≈ Γu to be an accurate approximation, the interior294

condition of the VI, over Iu, must be accurately solved. (This gives the significance of295
the final integral in (2.14).) Our AMR approaches will systematically refine on both296
sides of the computed free boundary Γh

u, and generally in the inactive set Ihu .297

3. A posteriori error estimation in the inactive set. For u ∈ X solving VI298
(2.2), an interior condition PDE holds in the inactive set Iu [25]. Our AMR strategies299
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(Section 4) do a posteriori refinement in the geometric vicinity of the free boundary,300
but we will also need to exploit a posteriori error indicators for the interior condition301
to achieve convergence. We consider two such PDE-type indicators.302

Example 3.1. Suppose Xh = CGk is the continuous, piecewise-polynomial FE303
space of degree k, and consider uh ∈ Xh. Noting ∇uh is discontinuous, but well-304
defined on each element, define Yh = DGk−1 for the (scalar) discontinuous space with305
polynomial degree k− 1, so that ∇uh ∈ Yd

h (vector-valued). Suppose there is a linear306
operator G : Xh → X d

h , into the continuous space, called gradient recovery (GR)307
[1, Chapter 4], so that G(uh) ≈ ∇uh in some sense. Over an element K ∈ Th, the308
corresponding error indicator ηK ≥ 0 is then309

(3.1) η2K =

∫
K

|G(uh)−∇uh|2 .310

We also define η2 =
∑

K∈Th
η2K . For certain gradient recovery methods G, when they311

are applied to the Poisson equation, we find that η ∼ |u − uh|H1 (energy norm) as312
h→ 0 [1, Theorem 4.4].313

Our application of GR in Section 6 will simply use orthogonal projection in L2314
for the map G. That is, G(uh) ∈ X d

h is defined to be the minimizer of315

(3.2) J(w) =

∫
Ω

|w −∇uh|2 dx.316

In this application Xh = CG1, ∇uh is in vector-valued DG0, and G(uh) is in X d
h .317

The second indicator, applied in Section 5 to classical problem (1.4), is a well-318
known explicit error estimator [1, Chapter 2].319

Example 3.2. Suppose u ∈ H1(Ω) solves the weak form Poisson equation a(u, v) =320 ∫
Ω
fv dx for all v ∈ H1

0 (Ω), with a(u, v) =
∫
Ω
∇u · ∇v dx and u = g on ∂Ω. Suppose321

that uh ∈ Xh = CG1 solves the corresponding finite-dimensional weak form. For each322
element K ∈ Th, define nK as the unit outward normal vector on ∂K. For a pair of323
elements L,K incident to an edge γ, and any vector field Z with traces ZL, ZK on γ,324
let JZ · nK = ZL · nL + ZK · nK be the jump of Z on γ. Given the (strong) residual325
r(uh) = −∇2uh − f of the Poisson equation, well-defined within each element K, the326
Babuška–Rheinboldt (BR) [4] error estimator is327

(3.3) η2K = h2K

∫
K

|r(uh)|2 dx+
hK
2

∑
γ∈∂K\∂Ω

∫
γ

J∇uh · nK2 dS,328

where hK is the diameter of K. It can be shown [1, Chapter 2] that the energy error329
is bounded by η2 =

∑
K∈Th

η2K :330

(3.4) |u− uh|2H1 =

∫
Ω

|∇(u− uh)|2 dx ≤ Cη2.331

Similarly the L2 error can be bounded by an estimator, which replaces the powers in332
(3.3) by h4K , h

3
K , respectively [1, Section 2.4].333

For the results in Sections 5 and 6, whether ηK is computed as in Example 3.1 or334
3.2, we will treat the values ηk as local element-wise error estimators. The set {ηK}335
will be thresholded to providing tagging of elements for refinement; see [6, Section 4.2]336
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for a discussion of techniques. In our applications, all (computed) inactive elements337
satisfying ηK ≥ θmax ηK , for 0 < θ < 1, will be tagged and refined.338

The BR error estimator for the interior condition is explicit and easily-computed.339
Ainsworth, Oden, and Lee [2] extend it to certain obstacle problems, but with heuris-340
tic aspects. On the other hand, for certain PDE problems, alternative estimators341
are provided by the dual weighted residual technique [6]. These are defined using a342
particular quantity of interest and some approximately-computed nonlocal weights,343
essentially Green’s functions of the adjoint PDE. Suttmeier [32] has extended this344
weighted residual technique to certain VI problems, but it also requires heuristic345
steps even for the classical obstacle problem. In this paper we avoid the complexity of346
such techniques, and instead take a pragmatic approach which combines refinement347
near a computed free boundary with application of a PDE-type error estimator, as348
above, within the computed inactive sets.349

4. New adaptive mesh refinement strategies. Our first two adaptive mesh350
refinement (AMR) methods, Algorithms 4.1 and 4.2, do targeted refinement near351
the free boundary. They are of tag-and-refine type. The third metric-based mesh352
adaptation approach [33], Algorithm 4.3, is more expensive.353

These methods all start from a computed solution uh ∈ Kh ⊂ Xh to problem354
(2.7). Specifically we need only the mesh Th, the obstacle ψh ∈ Xh, and uh. The355
following two concepts are fundamental.356

Definition 4.1. Denote the vertices of Th by xj. Given uh ≥ ψh and a tolerance
tol > 0, the nodal active set indicator is the unique νh ∈ Xh satisfying

νh(xj) =

{
1, uh(xj)− ψh(xj) < tol
0, otherwise.

Definition 4.2. An element marking of Th is a piecewise-constant indicator357
function 1h ∈ DG0(Th) with values in {0, 1}.358

For PDE problems,and element marking can be derived from an error estimator359
ηK , as in the previous Section, associated with a quantity of interest such as energy360
or L2 norm error [6]. However, a primary quantity of interest for obstacle problems361
is vicinity to the unknown free boundary. We do not associate this concept with a362
precise functional. Instead Algorithms 4.1 and 4.2 proceed heuristically to convert a363
nodal active set indicator into an element marking, with the goal of improving the364
approximation of the free boundary.365

Queries of PETSc DMPlex objects [26] will also be needed, so let us sketch how366
this class supports unstructured meshes. A DMPlex object stores the topology (con-367
nectivity) of a dimension d = 1, 2, 3 mesh. Every mesh entity, regardless of dimension,368
is assigned a unique index. Mesh connectivity is understood as a stratified directed369
acyclic graph, where a covering/incidence relationship between mesh entities deter-370
mines the graph edges. For example, a triangle within a 2D mesh is covered by371
its three edges, which are covered by their two endpoints (vertices). Each stratum372
(“height”) in the DAG represents a dimensional class of mesh entity; for example the373
cells, edges, and vertices in a 2D mesh are at heights 0, 1, 2. Given the index p of374
a mesh entity, the basic DMPlex queries [5] are cone(p), the set of indices of entities375
which cover entity p, and its dual support(p), the set of entities which are covered376
by p. The transitive closure of cone is closure(p), and that of support is star(p). In377
our application we need only the vertices in the element closure; we denote this as378
closure∧(k). Similarly, star∨(j) extracts only elements in the star of vertex xj .379
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Now we can define the Unstructured Dilation Operator (UDO) method, Algorithm380
4.1. It first computes a nodal active set indicator νh from uh. Denoting the degrees381
of freedom in DG0(Th) by xk, it then finds the set of indices k of elements such that382
0 < νh(xk) < 1. If uh ∈ CG1 then this condition holds when the element is incident383
to both active and inactive vertices. Then the method alternates closure and star384
on the marked element set n times, expanding the marking by n element layers, to385
generate a final element marking 1h. The motivation here is that if the approximation386
uh ≈ u is good for a non-degenerate VI problem (2.2) then the true free boundary387
Γu should pass through the elements indicated a posteriori by 1h. In Sections 5 and388
6 we will only consider n = 1, 2, as this much expansion seems to suffice for accurate389
representation of the free boundary after a few refinements.390

Algorithm 4.1 Unstructured Dilation Operator (UDO) element marking
Require: mesh Th, solution uh ∈ Kh, obstacle ψh ∈ Xh, tolerance tol > 0, and

expansion parameter n ≥ 1.
1: Compute nodal active set indicator νh ∈ Xh for uh.
2: Find initial element index set S0: k ∈ S0 if νh(xk) ∈ (0, 1).
3: for i = 0, . . . , n− 1 do

Si+1 =
⋃
k∈Si

⋃
j∈closure∧(k)

star∨(j)

4: return marking 1h ∈ DG0(Th) of all elements with indices in Sn.

While the UDO strategy explicitly manipulates indices, our second strategy, called391
Variable Coefficient Diffusion (VCD), Algorithm 4.2, is based on continuum ideas.392
Again the first step is to compute a nodal active set indicator νh ∈ CG1. This func-393
tion is used as the initial condition of a time-dependent, variable-coefficient diffusion394
equation,395

(4.1)
∂s

∂t
= ∇ · (D∇s) , s(t = 0) = νh,396

with Neumann (natural) boundary conditions, a well-posed problem. Clearly a solu-397
tion of (4.1) at t > 0 is a smoothed form of νh. The diffusivity is set to the square398
of the element diameter hK , namely D = Ch2K ∈ DG0, with C = 0.5 by default.399
The diffusion range is thus proportional to element diameter. In fact (4.1) is not400
solved exactly, or even very accurately, as we only compute sh ∈ Xh from a single401
backward-Euler step of duration ∆t = 1, equation (4.2) below. The default solver for402
this linear and elliptic problem is four iterations of conjugate gradient, preconditioned403
by incomplete-Cholesky factorization [11]. This inexpensive approximate solver has404
linear complexity in the vertices.405

Figure 4 illustrates how the VCD algorithm applies to a one-dimensional obstacle406
problem. Note that the thresholds α and β are key parameters, with defaults α = 0.2407
and β = 0.8. Lowering α toward zero expands the marking further into the inactive408
set, away from the (computed) free boundary, while increasing β toward one expands409
further into the active set.410

It turns out to be helpful, e.g. when solving the highly-nonlinear obstacle problem411
in Section 6, to add a minimum element diameter hmin to Algorithms 4.1 and 4.2. That412
is, after running one of the above Algorithms, we may un-set the element marking,413
1h|K = 0, of any element with hK < hmin.414
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Algorithm 4.2 Variable Coefficient Diffusion (VCD) element marking
Require: mesh Th, solution uh ∈ Kh, obstacle ψh ∈ Xh, tolerance tol > 0, and

threshold interval 0 < α < β < 1.
1: Compute nodal active set indicator νh ∈ Xh for uh.
2: For hK the element diameter, let D = 0.5h2K ∈ DG0(Th).
3: Approximately solve for sh ∈ Xh, with natural boundary conditions:

(4.2) sh −∇ · (D∇sh) = νh

return marking 1h ∈ DG0(Th) of all elements such that sh(xk) ∈ (α, β).

(a)
1

(b)

1 β = 0.8

α = 0.2

(c)
1

(d)

Fig. 4. Illustration of VCD: (a) Numerical solution uh (solid), with nodes xj shown (solid
dots), and obstacle ψh (red dashed). (b) Nodal active set indicator νh ∈ CG1(Th). (c) Smoothed
indicator sh, with element degrees of freedom xk (circles) and thresholding levels (red). (d) Element
marking 1h; here 4 elements are marked for refinement.

From an element marking 1h we then apply skeleton-based refinement (SBR) [29]415
to generate a refined mesh. Elements with 1h = 1 are refined, and any other elements416
as needed to avoid hanging nodes. Two SBR implementations are available, namely417
from PETSc DMPlex [5] and from the Netgen library [8]. Only the latter is currently418
capable of 3D refinement.419

Our third AMR method, called averaged-metric (AVM; Algorithm 4.3), uses420
metric-based mesh adaptation [3]. In contrast to tag-and-refine methods, mesh adap-421
tation generates a new mesh matching resolution and complexity targets. Adaptation422
is driven by an a posteriori metric field, defined as a continuous, matrix-valued func-423
tion Mh : Ω → Rd×d with each value Mh(x) a symmetric and positive-definite matrix.424
Such a metric contains local information on distances, areas, and volumes [28]. From425
the metric the mesher itself generates a unit mesh [3]. In the original space the refined426
mesh has variable edge lengths and element aspect ratios.427

AVM again starts from uh and ψh. The first metric is isotropic, and it is com-428
puted from the gradient of a smoothed nodal active set indicator, namely sh from the429
VCD method (Algorithm 4.2). The second metric is anisotropic, computed as an ap-430
proximate Hessian of uh via a Hessian-recovery technique [3]. (Actually the absolute431
value of the Hessian is used, which well-defined for a symmetric matrix [33].) These432
metrics are in the matrix-valued CG1 FE space, with metric normalization constants433
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computed from target complexity and element diameter bounds in a standard man-434
ner [33]. By construction, the first metric should generate small elements near the435
free boundary, while the second should reduce FE approximation error in the inactive436
set, according to the standard interpolation theory [14]. In AVM the final metric437
is a weighted average of the two metrics. This final metric is both anisotropic and438
free-boundary focussed, and it implies refinement in both the active and inactive sets.439
Our implementation calls the Animate library (github.com/mesh-adaptation/animate)440
to construct, normalize, and average the metrics, and the Pragmatic library [19] for441
meshing at the last step. Note that steps 2 and 3 in Algorithm 4.3 use the target442
complexity and element diameter bounds parameters.443

Algorithm 4.3 Averaged-metric (AVM) mesh adaptation
Require: mesh Th, solution uh ∈ Kh, obstacle ψh ∈ Xh, target complexity N , ele-

ment diameter bounds 0 < hmin < hmax, and averaging weight 0 ≤ γ ≤ 1
1: Compute sh ∈ Xh from Algorithm 4.2, using uh and ψh.
2: Compute normalized isotropic free-boundary metric: M1(x) = c1|∇sh(x)|Id×d.
3: Compute normalized anisotropic metric from Hessian: M2(x) = c2|Huh(x)|.
4: Average the metrics: M(x) = γM1(x) + (1− γ)M2(x).
5: return new mesh T̃h which is unit with respect to M(x).

The right-hand image in Figure 3 (Introduction) shows an AVM result on the444
“ball” obstacle problem; see Figure 2, middle. Note that iterating the AVM method,445
even while holding the target mesh complexity constant, can be worthwhile because446
the increased resolution near the free boundary allows the a posteriori metric to be-447
come more effective. A key idea when iterating AVM is that cross-mesh interpolation448
[18] provides a high-quality initial iterate on the new mesh. Because of the nontrivial449
computations needed in metric-based methods [3, 33], at high resolution one AVM450
iteration is notably more expensive than an iteration of UDO or VCD.451

All three Algorithms run in parallel under the MPI protocol used by Firedrake452
[26] and PETSc. However, only UDO produces results which are independent of the453
number of processes. The default preconditioned Krylov solver in VCD is slightly-454
dependent on process count [11]. Choosing a direct solver for problem (4.2) would455
give the VCD method process-independence, but it would also reduce scalability.456

We end this Section with two Python examples which illustrate how to use the457
open source VIAMR library (github.com/StefanoFochesatto/viamr).458

Example 4.3. Consider Example 1 from [2], a classical obstacle problem over a459
rectangle, with obstacle ψ = 0 and a known exact solution. The code below applies460
the Firedrake and VIAMR libraries to solve this problem. First it generates a uniform461
coarse mesh, then it applies VCD marking near the free boundary, and then it refines462
to a new mesh (Figure 5). There is no refinement in the inactive set, which is necessary463
for convergence; compare Example 4.4, and see the next Section.464

1 from firedrake import *
2 from viamr import VIAMR
3

4 mesh = RectangleMesh(6, 12, 0.5, 1.0)
5 x, y = SpatialCoordinate(mesh)
6 r = (x + 1.0) ** 2 + y ** 2
7 uexact = conditional(r < 2.0, 0.25 * r - 0.5 - 0.5 * ln(0.5 * r), 0.0)
8
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9 V = FunctionSpace(mesh, "CG", 1)
10 uh, vh = Function(V), TestFunction(V)
11 F = inner(grad(uh), grad(vh)) * dx - Constant(-1) * vh * dx
12 bcs = DirichletBC(V, Function(V).interpolate(uexact), "on_boundary")
13 problem = NonlinearVariationalProblem(F, uh, bcs)
14

15 sp = {"snes_type": "vinewtonrsls"}
16 solver = NonlinearVariationalSolver(problem, solver_parameters=sp)
17 psih = Function(V).interpolate(0.0)
18 INF = Function(V).interpolate(Constant(PETSc.INFINITY))
19 solver.solve(bounds=(psih, INF))
20

21 amr = VIAMR()
22 mark = amr.vcdmark(uh, psih)
23 VTKFile("mesh.pvd").write(uh, mark)
24

25 refinedmesh = amr.refinemarkedelements(mesh, mark)
26 VTKFile("refinedmesh.pvd").write(refinedmesh)

Fig. 5. The Python code in Example 4.3 solves Example 1 from [2]: initial mesh (left),
marking by the default-parameter VCD scheme (middle), and the refined mesh (right). The exact
free boundary, unknown to the algorithm, is overlaid in black.

Example 4.4. The following snippet was used for the left-hand mesh in Figure 3:465

1 amr = VIAMR()
2 fbmark = amr.udomark(uh, psih, n=1)
3 residual = -div(grad(uh))
4 imark, _, _ = amr.brinactivemark(uh, psih, residual, theta=0.7)
5 mark = amr.unionmarks(fbmark, imark)
6 refinedmesh = amr.refinemarkedelements(mesh, mark)

Here the UDO method is used to mark near the free boundary, then the BR error466
indicator (Section 3), from a computed element-wise residual, is applied for marking467
in the inactive set. Finally the marks are unioned and a new mesh is generated.468

5. Results on classical obstacle problems. We start this Section with a469
revised look at how numerical errors should be measured for obstacle problems, and470
then we show convergence and performance results on some examples. Section 6 will471
show results for a more-challenging, non-classical obstacle problem.472
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In order to measure the quality of the approximate sets (2.8), versus the exact sets473
(1.2), and to determine rates of geometric convergence, the VIAMR library computes474
a distance between sets. Our implementation of (5.1) below is based on Firedrake’s475
supermesh concept [18], so it is computable for sets S, T which are unions of elements476
from different meshes, and/or for sets defined by algebraic (conditional) expressions477
in the mesh coordinates.478

Definition 5.1. The Jaccard distance [27] between measurable sets S, T ⊂ Ω is479

(5.1) d(S, T ) = 1− |S ∩ T |
|S ∪ T |

,480

where | · | is Lebesgue measure, with d(S, T ) = 0 by definition if |S ∪ T | = 0.481

We will use Jaccard distance to compare active sets. If d(S, T ) = 0 then S and482
T geometrically agree up to a set of measure zero, and for a computed active set Ah

u,483
defined by an element marking (Definition 4.2), we will report d(Ah

u, Au) when Au is484
exactly known.485

A second goal for numerical solutions of obstacle problems is to avoid wasted486
effort in the active set, once the free boundary is well-resolved. As already discussed,487
if Γh

u ≈ Γu is a good approximation then the obstacle data itself, namely ψ, can488
be used to represent the solution in the computed active set Ah

u. This motivates a489
definition.490

Definition 5.2. Suppose the original VI problem (2.2) has exact obstacle ψ ∈491
X ∩ C(Ω̄). Consider a computed solution uh to the approximating problem (2.7),492
with computed active set Ah

u, a union of closed elements. We define the preferred493
approximation ũh as the measurable function494

(5.2) ũh(x) =

{
ψ(x), x ∈ Ah

u

uh(x), otherwise.
495

For a classical obstacle problem (1.4), the preferred approximation ũh is in L2(Ω).496
It is generally discontinuous, even when Xh = CGk, thus ũh /∈ H1(Ω). However, ũh is497
defined without reference to the exact solution to problem (2.2); only the continuum498
data ψ is referenced. The L2 error relative to ũh has a clear decomposition over the499
sets defined in (1.2) and (2.8):500

(5.3) ∥u− ũh∥22 = 0 +

∫
Au\Ah

u

|ψ − uh|2 +
∫
Ah

u\Au

|u− ψ|2 +
∫
Iu∩Ih

u

|u− uh|2.501

The leading zero comes from the integral over Au ∩Ah
u, where u = ũh = ψ. The next502

two terms are small if the free boundary has been accurately located (Γh
u ≈ Γu), the503

goal of AMR in Section 4. The final term is small if inactive-set refinement is effective504
(Section 3). The next example shows that our methods converge in norm (5.3).505

Example 5.3. Consider the “ball” classical obstacle problem shown in Figure 1 and506
Figure 2 (middle), which has a known exact solution [11, Chapter 12]. Algorithms 4.1507
(UDO) and 4.2 (VCD) were applied to this problem, combined with inactive-set mark-508
ing based on the BR error estimator (3.3). These methods, denoted UDO+BR and509
VCD+BR, avoid refinement in the active set, except near the estimated free bound-510
ary. We also applied mesh adaptation Algorithm 4.3 (AVM), setting mesh complexity511
targets to closely-match the number of elements from the other Algorithms; note that512
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AVM refines everywhere. The experiment started from a coarse uniform mesh over513
the square domain, and applied 11 levels of AMR, so that the number of elements514
increased by four orders of magnitude. We also compared uniform refinement.515

As shown in Figure 6, our AMR methods are clearly superior to uniform refine-516
ment when evaluated by active set Jaccard distances d(Ah

u, Au). At higher resolutions,517
all three AMR methods reduce this distance an order of magnitude below uniform518
refinement. While AVM produces the best meshes by this measure, its runtime is519
about an order of magnitude higher at comparable mesh complexity (not shown).520

Fig. 6. Active set Jaccard distances d(Ah
u, Au).

On the other hand, Figure 7 (left) shows that L2 convergence using the standard521
error norm ∥u − uh∥2 stagnates for the UDO+BR method. This is entirely due to522
the contribution from the active set, i.e. from |ψ(x)−ψh(x)| for x ∈ Ah

u, over meshes523
which have deliberately not been refined in Ah

u. If we compute the L2 error relative524
to the preferred approximation for the same meshes, namely ∥u − ũh∥2 as in (5.3),525
then the convergence is better than from uniform refinement, in a per-element sense.526
Results from VCD+BR are virtually identical, and thus not shown.527

As shown in Figure 7 (right) for the AVM algorithm, because of its active set528
refinement, standard (∥u−uh∥2) and preferred (∥u−ũh∥2) error norms are comparable.529

Fig. 7. Left: L2 norm errors for the UDO+BR method, versus uniform refinement. Right:
The same norm errors for the AVM method.

To illustrate some additional mesh and performance features of our AMR ap-530
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proaches, we consider three more classical obstacle problem examples. These do not531
have known exact solutions.532

Example 5.4. Consider the spiral example on Ω = (−1, 1)2 from [20, subsection533
7.1.1], shown in Figure 2 (left). This example has source term f = 0, homogeneous534
boundary values g = 0, and a nontrivial obstacle ψ. The active set is small in area535
while the free boundary is long. A result from applying the UDO+BR approach is536
shown in Figure 8. (Results from VCD+BR and AVM approaches are very similar537
and not shown.) The free boundary is well-resolved, but there is no performance538
advantage from avoiding refinement in such a small active set.539

Fig. 8. A refined mesh for Example 5.4, with 2 × 105 elements, from seven levels of the
UDO+BR approach, starting from an initial uniform mesh of 200 elements. Element diameter
(resolution) is h ≈ 10−3 along the free boundary.

Example 5.5. Consider the example shown in Figure 2 (right), which has a large540
active set. Here Ω = (0, 1)2 and ψ = g = 0 in (1.4). The source term f is a sum541
of small-variance gaussian peaks against a negative background value; see the code542
for details. The blistering property (Appendix A) applies, so inactive set components543
necessarily include a f > 0 portion. The inactive set has six connected components,544
but this is only revealed at high resolution. Figure 9 shows the result of applying the545
VCD+BR method, giving a mesh with 100 times fewer elements than a uniform mesh546
with the same free-boundary resolution. Similar to the glacier example in the next547
Section, in this case the avoidance of active-set refinement gives a distinct performance548
advantage. The result from UDO+BR is very similar, and not shown.549

Example 5.6. Our third example is a free-boundary variation of the classic L-550
shaped Laplace equation problem with an interior corner. Here the obstacle ψ is the551
upper unit hemisphere, centered at the origin, and the domain is Ω = (−2, 5)2 \ S552
where S is a 3 × 3 square in the lower right corner. Since f = 0 and g = −1, the553
Laplace equation is solved in the inactive set, with unbounded solution Hessian in554
the interior corner. A result from AVM, starting from a coarse unstructured mesh,555
is shown in Figure 10. (Again the other methods produce similar results.) Though556
the exact free boundary is not known, it resolves into a smooth and nearly-circular557
curve. At the same time there is refinement in the interior corner. This example shows558
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Fig. 9. Left: A mesh for Example 5.5 of 4.7 × 105 elements, with resolution h ≈ 10−3 along
the free boundary, from four levels of the VCD+BR approach, starting from a uniform mesh of 1800
elements. Right: Zooming-in reveals inactive-set refinement, and separation of components.

that free-boundary localization and classical PDE refinement goals are simultaneously559
addressed.560

Fig. 10. A refined mesh from three iterations of AVM Algorithm 4.3 on Example 5.6, showing
a well-resolved free boundary and refinement in the interior corner.

6. Application to determining glaciated land areas. In this section we561
apply our AMR techniques to a model for the steady geometry of a glacier, over a562
given bedrock topography and subject to a given climate. In particular, this model563
solves for which land is covered by ice. Though glacier ice will cover any land on which564
snowfall exceeds melt, ice flow expands the glaciated area out to a free boundary, the565
glacier margin, which can only be found from conservation equations. In fact, any566
fluid layer subject to surface processes which add or remove mass is governed by a567
related model [10]. In these VI problems, which generally are not of optimization568
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type, the unknown fluid thickness must be nonnegative, the operator is nonlinear,569
and the blistering property (Appendix A) applies.570

Let Ω ⊂ R2 be a fixed land region, with bedrock elevation b ∈ C1(Ω) and a571
surface mass-balance [21] function a : Ω× R → R. The value of this climatic function572
is the annually-averaged rate of ice accumulation (snow) minus melt and runoff. If a573
depends on the surface elevation s then we suppose that a(x, y, s) ∈ L∞(Ω) for any574
s ∈ L∞(Ω), and additionally that a is Lipschitz continuous in s.575

We use an ice flow approximation called the shallow ice approximation [21], de-576
rived by a small aspect ratio argument from mass and momentum conservation, in577
its simplest isothermal and non-sliding case. Applying the standard exponent for578
the shear-thinning flow law of ice [21], we have a VI for admissible transformed ice579
thickness functions u ∈ K = {u ∈ X : u ≥ 0 and u|∂Ω = 0}, in the Banach space580
X = W 1,4(Ω) [22]. The thickness itself is H = u3/8, while the surface elevation is581
s = H + b = u3/8 + b. The model is a VI based upon a “tilted” variation of the582
p-Laplacian operator [22]:583

(6.1)
∫
Ω

Γ|∇u+ β(u)|2(∇u+ β(u)) · ∇(v − u)− ã(u)(v − u) dx ≥ 0584

for all v ∈ K. Here Γ > 0 is an ice softness constant, the tilt β(u) = 8
3u

5/8∇b is a585

nonlinear multiple of the bed gradient, and ã(u) = a(x, y, u3/8+b) denotes the surface586
mass balance. If a has no s dependence then we may treat it as the source term, and587
write “F (u)[v − u] ≥ ℓ[v − u]” as in (2.2), but otherwise we simply set ℓ = 0 in (2.2).588
If also ∇b = 0 then (6.1) defines a nonlinear operator F (v)[w] which is 4-coercive; see589
Example 2.2. Regarding the mathematical theory of (6.1), existence holds for any590
b when a is independent of s [22]. Simple cases of non-existence are known when591
a depends on s [23], but our examples below have slow increase of snowfall with592
elevation [21], which avoids this issue, and we suppose the solutions below are unique.593

The strong-form interior condition for (6.1) is a conservation equation, namely594
∇ · q = ã over Iu, where the flux is given by595

(6.2) q = −Γ|∇u+ β(u)|2(∇u+ β(u)).596

At the free boundary (glacier margin) the solution u, the solution gradient |∇u|, and597
the flux q all go to zero. On the other hand, observations confirm that the gradient of598
a glacier’s surface has large magnitude as one approaches the margin from the ice side,599
a property which emerges from (6.1) when one differentiates the associated surface600
elevation s = u3/8 + b. Generally |∇s| → ∞ at the glacier margin.601

We apply a conforming, continuous, piecewise-linear FE method to (6.1), over602
unstructured triangulations. The FE problem is either solved directly by the same603
VI-adapted Newton solver used in Section 5, namely vinewtonrsls in PETSc [5]) ,604
or with an added outer Picard-type iteration over the tilt β(u) [22] and source ã(u),605
with Newton as the inner iteration. The Newton steps are solved using Firedrake’s606
default direct linear solver. Very similar results are obtained when these iterations607
both converge, but the Picard-based solver is more robust when |∇b| is large or ã608
depends on u.609

We consider two particular problems, each over a square domain Ω = (0, L)2 with610
L = 1800 kilometers. The first “dome” problem has a flat bed, elevation-independent611
source, and a known exact solution [9]; this is used for verification and to compare612
AMR algorithms. The second problem has a bumpy bed and an elevation-dependent613
surface mass balance function.614
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Example 6.1. The dome problem was solved with 13 levels of refinement from an615
initial, uniform h0 = 360 kilometer mesh to a final mesh with glacier margin resolution616
of h13 ≈ 30 meters. Both UDO and VCD methods (Algorithms 4.1 and 4.2) were617
applied, with gradient recovery (GR; Example 3.1) marking in the inactive set,1 and618
the results were very similar. Because the obstacle is ψ = 0, the preferred (5.2)619
and standard numerical solutions are the same. Figure 11 shows relative H1 errors620
in the solution (∥u− uh∥H1/∥u∥H1) and absolute L∞ errors in the corresponding ice621
thickness (∥H−Hh∥L∞), versus number of elements. The latter errors are much more622
responsive to AMR because the ice thickness gradient is singular at the free boundary.623
That is, Figure 11 right is primarily reporting (lateral) margin location errors. In624
fact, similar to the Jaccard distances reported in Example 5.3, Figure 12 shows the625
maximum radial error for the numerical margin. We see that our AMR methods are626
quite efficient for free-boundary localization, compared to uniform refinement.627

Fig. 11. Left: Relative H1 norm errors in u are comparable for AMR and uniform refinement,
in a per-element sense. Right: AMR is very effective for the maximum thickness error.

Fig. 12. AMR generates accurate free-boundary locations. To achieve tens of meters accuracy,
as here, uniform refinement would use orders of magnitude more elements.

Example 6.2. The next example is more realistic. It uses a bumpy bedrock to-628
pography b(x, y), constructed from a finite sum of sinusoids [13, Example 8.4], and a629
surface mass balance function a(s) which depends only on surface elevation; see the630

1Note that the argument for BR marking given in Section 3 does not apply here.
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source code for details. An important parameter in the formula for a(s) is the equi-631
librium line altitude (ELA) [21], denoted s0, with a > 0 above this altitude and a < 0632
below. To illustrate this parameter, Figure 13 shows the topography along a transect633
x = x̂, the red line in Figure 14, with three s0 values superimposed. Net snowfall634
a > 0 occurs on a solution-dependent set S = {(x, y) : u(x, y)3/8 + b(x, y) > s0}, and635
glaciation then extends beyond S because of flow: Iu ⊃ S. The difficult nonlinearities636
in model (6.1) include this elevation-dependent surface mass balance, but also the637
u5/8 dependence in the tilt β(u). Among the effects of the latter is the tendency of638
ice to pool in bedrock elevation lows. Our primary goal in this example is to generate639
an accurate map of glaciation, i.e. of the inactive set Iu. Related goals are to compute640
the ice volume V =

∫
Ω
u3/8 dx dy, and to find the number of connected components641

of Iu, that is, the number of glaciers in the given climate.642

Fig. 13. Bedrock elevation (solid) along a transect, with three ELA levels s0.

We again applied UDO, with n = 2 expansion, plus GR marking in the inactive643
set to resolve ice flow. Using a minimum element diameter hmin = 500 meters, the644
final meshes averaged 300 meter resolution along most of their margins. The solution645
surface elevation maps for the three ELA values are shown in Figure 14. The very646
different ice volumes, 1.1×105, 5.6×105, and 8.9×105 cubic kilometers, respectively,647
reflect the strong ELA sensitivity of realistic glacier models [21].2648

Fig. 14. Glacier surface elevation (grayscale) for ELA of 1000 meters (left), 800 meters
(middle), and 600 meters (right). Inset boxes are 200 km across; see Figure 15.

Figure 15 shows details of the meshes along sample portions of the glacier margins.649
It is key to observe that under the UDO+GR approach the mesh was not refined in the650
vast majority of the active set, and this represents a significant efficiency. That is, we651
did not waste computational effort (e.g. elements) on modeling ice flow in unglaciated652
areas. In fact this highly-nonlinear problem causes this AMR algorithm to work quite653
hard to pin down the glacier margin, as only once the flow on the inactive side of the654
margin is resolved at high resolution will margin location stabilize.655

2Compare the volume of the present-day Greenland ice sheet at 2.9× 106 cubic kilometers.
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Fig. 15. Details of refined meshes (red) along glacier margins, from the inset boxes in Figure
14, for the same ELA values. The dark areas are coarsely-meshed ice-free areas, i.e. active sets.

7. Discussion. It is well-known that inequality-constrained obstacle problems656
are intrinsically nonlinear, thus that solution methods must be iterative. At a basic657
level our AMR methods simply extend the mandatory iteration to the generation of658
sequences of well-adapted unstructured meshes.659

The UDO and VCD Algorithms from Section 4 combine two relatively-simple660
tagging strategies based a posteriori on the numerical solution:661

i) assuming uh and ψh can estimate the true free boundary Γu, mark nearby662
elements on both sides of the computed free boundary Γh

u, and663
ii) assuming uh approximates the true solution u in the computed inactive set664

Ihu , mark elements in this set using PDE-type error estimates (Section 3).665

AVM Algorithm 4.3 uses the same essential heuristics to generate a metric, which666
enables mesh adaptation.667

Our AMR strategies are tied to the a priori theory in Section 2. On the other668
hand, we have no direct, quantitative theory of how they reduce numerical error. Ob-669
serve that i) has nothing directly to do with the regularity or residual of uh; refinement670
is geometrical in the domain. On the other hand, ii) could be done by methods of671
arbitrary sophistication. For example, dual weighted residual methods [6, 32] could be672
applied, although their adjoint-type weights are incapable of communicating informa-673
tion between disconnected components of the inactive set, the number and geometry674
of which are only found at solution time. (Example 5.5 is an example.)675

For classical obstacle problems, the mesh sequences built by our AMR techniques676
allow the bulk of the Newton iterations to occur inexpensively on the coarse early677
meshes. However, for harder problems like the glaciation obstacle problem in Section678
6, the solver and AMR components strongly interact. Nontrivial solver iterations are679
needed on intermediate meshes, to find and stabilize the free boundary.680

An important extension of our work would be to find effective refinement strategies681
for time-dependent obstacle problems and parabolic VIs. Also, performance could682
be improved by integrating AMR into a multilevel solver, though this is also for683
future research. For example, the solver in [13] uses coarse meshes to make large684
corrections, including geometrically to the free boundary, and so a combination with685
AMR promises highly-scalable solutions of difficult obstacle problems.686
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Appendix A. Obstacle problems with the blistering property.776
In a classical, unilateral obstacle problem (1.4) an upward force f(x) > 0 may777

occur in the active set Au. Physically speaking, in such a case the upward force was778
insufficient to lift u off the obstacle ψ. However, in certain problems this situation779
cannot occur. The hypotheses of Lemma A.1 hold for classical problems (1.4) when780
ψ = 0, for the porous dam saturation free-boundary problem [2, for example], and for781
the glacier problem in Section 6.782

Lemma A.1. Suppose that ψ = 0 and ℓ[v] =
∫
Ω
fv dx for f ∈ L2(Ω). Suppose783

also that the operator F is given by measurable densities,784

(A.1) F (w)[v] =

∫
Ω

ϕ(w(x),∇w(x))v(x) + Φ(w(x),∇w(x)) · ∇v(x) dx,785

satisfying ϕ(0, 0) = 0 and Φ(0, 0) = 0. Then for u solving VI (2.2), f ≤ 0 a.e. in Au.786

Proof. Let S ⊂ Au be a Borel set, and denote its indicator function by χS ∈787
L∞(Ω). By a density argument and the assumptions on ϕ and Φ, the operator value788
F (u)[χS ] is well-defined, and zero, because S is in the active set. Thus by Lemma 2.3,789

0 ≤ dµu(S) = F (u)[χS ]− ℓ[χS ] = 0− ℓ[χS ] = −
∫
S

f dx.790

This shows f ≤ 0 a.e. with respect to Lebesgue measure.791

Definition A.2. For a unilateral obstacle problem (2.2) with source term ℓ[v] =792 ∫
Ω
fv dx and f ∈ C(Ω̄), we say that the blistering property holds if Au ⊂ {x ∈ Ω :793

f(x) ≤ 0} [22], that is, if the conclusion of Lemma A.1 holds.794

To explain the language, if f(x) > 0 for some x ∈ Ω then, assuming this property,795
the inactive set Iu must be non-empty, and x ∈ Iu. That is, even a small upward796
force “blisters” the membrane off the obstacle.797

Any classical problem (1.4) with a smooth obstacle ψ ∈ C2(Ω̄) can be transformed798
into one with the blistering property. Let ṽ = v − ψ, thus K̃ = {ṽ ∈ X : ṽ ≥799
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0 and ṽ|∂Ω = g − ψ|∂Ω}. Integration-by-parts shows (1.4) is equivalent to finding800
ũ = u− ψ ∈ K̃ so that801

(A.2)
∫
Ω

∇ũ · ∇(ṽ − ũ) ≥
∫
Ω

(
f +∇2ψ

)
(ṽ − ũ) for all ṽ ∈ K̃.802

For VI problem (A.2), if x ∈ Aũ = {ũ(x) = 0} then f̃(x) = f(x) +∇2ψ(x) ≤ 0.803
For blistering-property problems, AMR costs can be reduced by systematically804

avoiding refinement in the computed active sets. From a computed solution uh, one805
identifies elements K ∈ Th such that K ⊂ Ah

u. (In our implementation we require that806
every node in the closure of K is active, according to some tolerance.) The degenerate807
case must be excluded, so we also require K ⊂ Ω− = {x ∈ Ω : f(x) < 0}; note this808
uses only the data of the problem. Then for K ⊂ Ω− ∩ Ah

u no refinement is needed809
if K is geometrically far from the free boundary. However, if later refinements move810
the free boundary to be incident to K then refinement of K becomes appropriate.811
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