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ADAPTIVE MESH REFINEMENT FOR OBSTACLE PROBLEMS*

G. STEFANO FOCHESATTO! AND ED BUELER}

Abstract. Free-boundary problems posed as variational inequalities, including obstacle prob-
lems, appear in many scientific and engineering applications. In their finite element (FE) solution,
localization of the free boundary may be a primary goal, and the geometrical localization error often
dominates the overall numerical error. In this paper we implement, using the Firedrake FE library,
new parallel adaptive mesh refinement strategies which generate accurate, high-resolution free bound-
aries through h-refinement. We evaluate three approaches: (i) a tag-and-refine unstructured dilation
operator method using discrete adjacency to the free boundary, (i) a tag-and-refine method based
on variable-coefficient diffusion, which thresholds a diffused active-set indicator function, and (#i3) a
metric-based mesh adaptation method which averages an anisotropic, Hessian-derived Riemannian
metric with an isotropic metric computed from the diffused indicator in (7). For (i) and (%) classical
a posteriori error estimators must be added within the computed inactive sets to attain convergence.
These methods are evaluated, versus mesh complexity, by norm error and by geometrical localization
using Jaccard distances for active sets. Applications include classical Laplacian obstacle problems
and a shallow ice flow problem for predicting glaciation.

Key words. variational inequality, free boundary, obstacle problem, finite element, adaptive
mesh refinement, glaciers

MSC codes. 35J85, 35R35, 65N50

1. Introduction. The classical Laplacian obstacle problem [25] finds the equi-
librium vertical displacement u of an elastic membrane over some domain Q C RZ.
The membrane, attached with displacement g at the fixed boundary 052, is subjected
to an applied force f, but it is also constrained to be above a given obstacle 1. The
strong formulation is thus a complementarity problem over 2:

(1.1a) ~Vu—f>0
(1.1b) u—1 >0
(1.1c) (~Vu—f)lu—9)=0

From a solution of (1.1), or rather of its weak form (below), we may identify the
inactive and active sets, and the free boundary:

(1.2) I,={x€Q:ux)>¢@)}, A,=Q\IL, TI,=Qnadl,.

Fic. 1. Solution, as wireframe, to a problem with a (hemi)spherical obstacle.
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2 G. S. FOCHESATTO AND E. BUELER

For the example shown in Figure 1, the obstacle ¢ is an upper hemisphere, the
active set A, (white mesh) is a disc, and the free boundary T',, is a circle. Note that u
solves the Poisson equation —V?u = f on I,; this “interior condition” of the problem
is the black mesh in the Figure. Note that both Dirichlet (v = %) and Neumann
(Ou/On = O /In) conditions apply along the unknown free boundary T',,.

Another physical interpretation of problem (1.1) is that v models the water pres-
sure, which cannot go below zero (¢ = 0), in a porous dam [2, for example|; see
Example 4.3. Section 6 will present a different obstacle problem application with a
highly-nonlinear operator. There the solution is the surface elevation of a glacier,
which is constrained to be above the bedrock elevation on which the glacier sits.

Problem (1.1) has a weak formulation which is a variational inequality (VI) [25]
over a Sobolev space. Let Q C R? be the domain, d > 1, let X = H(Q) [16], and
suppose ¥ € X N C(). Let g : 92 — R be continuous, with g > v|sq, and define

(1.3) K={ueX :u>yand ulpg = g}

as the admissible subset, which is closed and convex in X. For f € L?(f2), the VI
formulation of (1.1) finds u € K so that

(1.4) /QVU~V(vfu)Z/Qf(v—u) for all v € K.

In Section 2 we will recall the theory of such VIs, and extend the theory of their
finite element (FE) approximation. We will generalize (1.4) from elliptic bilinear forms
like (1.4) to coercive nonlinear operators over Banach spaces. In an FE approximation
of such a VI the numerical solution wuj; will solve the same weak form, but over a
finite-dimensional admissible set constructed on a mesh 7j. Similarly to Cea’s lemma
for PDEs [15], the norm errors ||u — up|| can be bounded a priori, which we do by
extending the Falk [17] technique to nonlinear operators. This will show how norm
errors are controlled by FE space approximation properties, as usual, but subject to
admissibility concerns, and with separation of active-set and inactive-set errors.

Adaptive mesh refinement (AMR) uses a posteriori information from the numer-
ical solution to strategically add mesh elements to increase the resolution and reduce
the numerical error. However, for VI problems the simulation goal is often the accu-
rate approximation of the sets in (1.2), attainability of which is problem-dependent.

Example 1.1. Suppose Q = (—1,1), ¥(z) = 1 — 22, and g(x) = 0, but let f be
constant: f(x) = a. The exact solution u of (1.4) is now easily calculated: u(z) =
P(x) if & <2 and u(z) = 0.5a¢p(x) > ¢(x) if o > 2. Thus for o > 2 we have A4, = Q
and I, = 0, while if o < 2 then A, = 0 and I, = Q. This example shows that the sets
(1.2) are not continuous functions of the data f of the problem. An easy modification
of this example shows that the sets are also not continuous functions of .

The o = 2 case of Example 1.1 is degenerate [25], that is, the unconstrained
solution happens to match the obstacle on a nonempty open set. Usable convergence
results for FE approximations of the solution-dependent sets A, I,,, I',, will usually de-
pend upon problem nondegeneracy, and our examples are accordingly non-degenerate.
Furthermore, the effectiveness of different AMR strategies for non-degenerate VI prob-
lems depends strongly upon the measure (area or volume) of the active and inactive
sets. This observation largely motivates the a posteriori approaches of this paper.
For example, in certain problems, those elements which are significantly interior to
the active set require no further computation or refinement. For such problems, with
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ADAPTIVE MESH REFINEMENT FOR OBSTACLE PROBLEMS 3

examples given in Sections 5 and 6, if a solution is desired at higher resolution within
the active set then this can be computed in post-processing by arbitrary interpolation
of the obstacle data 1.

Ezxample 1.2. Examples in Section 5 include three classical obstacle problems over
square domains, and Figure 2 shows their active sets in black. For the left-hand
problem, with a small active set and a long free boundary, our AMR methods refine
a large fraction of the elements, namely the many elements which are close to the
free boundary. The middle problem has a known exact solution; Example 5.3 shows
convergence rates. For the right-hand problem, a clear performance benefit of our
techniques, relative to uniform refinement, comes from avoiding refinement in the
active set, an efficiency also exploited by the glaciation application in Section 6.

Fic. 2. The area (measure) of the active set (black) can vary from small to large (left to right);
the middle image matches Figure 1.

In this work we consider only P; element spaces over meshes of triangles or
tetrahedra, and only A-refinement is addressed. However, VIs can be solved using
p-refinement and higher-order elements, once nontrivial penalty-type modifications
are made to the VI [24], but this is not attempted here. Also, while the classical
obstacle problem (1.4) is equivalent to constrained minimization of a scalar objective,
our analysis of FE errors for VI problems will not require such an objective, and our
refinement strategies do not exploit one if available.

Three AMR methods for VIs are introduced and detailed in Section 4. Our im-
plementations use the Firedrake FE library [31] and generate conforming meshes with
no hanging nodes. The first two methods are of tag-and-refine type, only differing by
which elements are tagged, with skeleton-based refinement (SBR) [29] applied after
tagging. These two methods also require complementary refinement of the PDE prob-
lem in the inactive set to achieve convergence; see Section 3. The third method uses
the Netgen and Animate [33| libraries for goal-oriented, metric-based mesh adapta-
tion. Here is a high-level view of the new methods:

UDO: The unstructured dilation operator method discretely identifies elements ad-
jacent to the computed free boundary, employing a graph-based approach to
tag neighboring elements for refinement. It generalizes the image processing
operation of dilation [30] to unstructured meshes.

VCD: The variable-coefficient diffusion method starts from a node-wise indicator
function for the current computed active set. This indicator becomes the ini-
tial iterate in a single step of a time-dependent heat equation problem, which
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4 G. S. FOCHESATTO AND E. BUELER

109 smooths the indicator about the free boundary. This smoothed indicator is
110 then thresholded for element tagging and refinement.

111 AVM: The averaged-metric method computes an intermediate representation of the
112 size, shape, and orientation of a new mesh, namely as a tensor-valued Rie-
113 mannian metric [3]. Here the metric is an average of an anisotropic metric,
114 from the Hessian of the computed solution [33], and an isotropic metric de-
115 rived from the diffused active set indicator of the above VCD method. This
116 method can maintain mesh complexity as it simultaneously resolves the free
117 boundary and reduces errors in the inactive set.

118 Note that the UDO and VCD methods generally produce similar results, but their

119  motivation, and their control parameters, are sufficiently different to justify separate
120 presentation.

121 Example meshes are shown in Figure 3, generated by three levels of refinement
122 using the above three methods, starting from a coarse uniform mesh, on the obstacle
123 problem shown in Figure 2 (middle). All three schemes quickly concentrate effort
124 around an accurately-localized free boundary, augmented by refinement as needed in
125 the inactive set (Section 3). This kind of AMR accelerates convergence and reduces
126 unnecessary computation.
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Fia. 3. Meshes from UDO (left), VCD (middle), and AVM (right) methods.

127 AMR for VI problems has only been lightly explored in the literature. The first
128 published analysis may be [2], giving an error bound for the classical obstacle prob-
129 lem in terms of local functionals associated with each element. The monograph by
130 Suttmeier [32] covers a broader class of problems, including elasticity. For the classical
131 obstacle problem, the constructable error estimators in these works require heuristic
132 assumptions which may not hold in general. (See inequality (42) in [2], and the ap-
133 proximation “(u — ¥)A, ~ 07 in [32].) To our knowledge these approaches are not
134 found in publicly-available implementations, nor are they as efficient as our strategies
135 for computing high-resolution approximations to free boundaries.

136 Our focus in this paper is on AMR performance, not solver performance. For
137 all examples we used a fixed, VI-adapted, reduced-space Newton method with line
138 search [7], implemented in PETSc [5]. Note that since the constraint u > v makes
139 VI problems nonlinear, an iterative solver is required even if the operator is linear
140 as in (1.4). Such a numerical method cannot converge quadratically until the active
141 and inactive sets stabilize on the given mesh. Then convergence will occur in one
142 additional iteration, for a linear operator, or otherwise in a few iterations for a well-
143 behaved nonlinear operator.
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ADAPTIVE MESH REFINEMENT FOR OBSTACLE PROBLEMS )

In summary, here are two principles for the AMR methods of this paper:

1. Relative to uniform refinement, they exhibit significant improvements in con-
vergence rate. This is measured by norms, or especially by free-boundary
localization (geometrical) error (Section 5), per mesh degree of freedom.

2. Their implementations (github.com/StefanoFochesatto/viamr) within the Fire-Jj
drake [26] FE library are parallel, well-documented, and easy-to-use.

The paper is organized as follows: Section 2 provides a priori norm bounds
for FE methods applied to VI problems; aspects of this material are new. Section
3 addresses a posteriori error estimators which can be applied in the inactive set.
Section 4 describes the three new AMR methods in more detail. Sections 5 and 6
compare and discuss their performance on classical obstacle model problems and in a
realistic glacier application. Table 1 states the few abbreviations used herein.

AMR  adaptive mesh refinement GR gradient recovery
AVM*  averaged-metric PDE partial differential equation
BR Babuska—Rheinboldt SBR skeleton-based refinement
CG continuous Galerkin UDO*  unstructured dilation operator
DG discontinuous Galerkin VCD*  variable-coefficient diffusion
FE finite element VI variational inequality

TABLE 1

Abbreviations used in this paper. Stars indicate the new AMR methods.

2. Variational inequalities and their finite element approximations. We
consider unilateral obstacle problems in Banach spaces. Let Q@ C R?% d > 1, be
a bounded, polygonal domain. Let X = W'P(Q), p > 1, be the Sobolev space
of measurable functions with pth-integrable weak gradients [16]. We will assume
continuous problem data, with well-defined point values, so suppose ¢ € X N C(Q)
and g € C(90) satisfy g > 1|gq. Define the closed and convex admissible subset

(2.1) K={veX:v>¢andv|pg =g} C X,

same as in (1.3). Observe that generally ¢ ¢ K.

Let X’ be the dual space of X, and denote the application of w € X’ to v € X by
w[v] € R. The norm on X is denoted ||-||, and for X the norm is [|w||" = sup =1 [w[v]].
Let F: K — X’ be a given operator, generally nonlinear, and let £ € X’ be given.
(While F in Example 2.1 is defined on all of X, the problem in Section 6 shows how
F might be defined only on K.) The VI associated to this data, a unilateral obstacle
problem, finds u € K so that

(2.2) F(u)[v—u] > lv—u] forallvek.

The problems in this paper can be analyzed within the framework of coercivity
and Lipschitz continuity. We say F' is g-coercive, 1 < g < 00, if there is a > 0 so that

(2.3) (F(v) = F(w))lv —w] > affo — wl|?

for all v,w € K. Note that if F' is g-coercive then it is also strictly monotone:
(F(v) = F(w))[v —w] > 0 for v # w. Let Br(0) be the open ball at 0 € X of radius
R > 0. We say F is Lipschitz on bounded subsets if there is C(R) > 0 so that

(2.4) I1F(v) = F(w)||" < C(R)|lv — w]|

This manuscript is for review purposes only.
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6 G. S. FOCHESATTO AND E. BUELER

for all v,w € Br(0) N K. If F satisfies (2.4) then it is continuous. From coercivity,
strict monotonicity, and continuity of F' it follows that a unique solution to (2.2) exists
[25, Corollary II1.1.8].

Ezample 2.1. In the classical obstacle problem (1.4), over X = H}(Q) = WH2(Q),
F(u)[v] = [, Vu - Vudz. This bilinear operator is 2-coercive because the Laplacian
is uniformly elliptic [16], and it is Lipschitz over X with constant C' = 1.

Example 2.2. In the glacier model of Section 6, when the bedrock is flat and
the surface mass balance is independent of elevation the VI problem (6.1) uses a
4-Laplacian operator over transformed thicknesses v € X = W14(Q): F(u)[v] =
JoTIVu|?*Vu - Vode where T > 0 is constant. This operator is 4-coercive [22, for
example|, and Lipschitz on bounded subsets of X.

Note that if the inequality constraint in (2.2) were absent then the residual of the
solution u would be zero (F(u) — ¢ = 0); this is the PDE case. However, for VI (2.2)
we only have that F'(u) — ¢ = 0 a.e. within an unknown inactive set I,,. The residual
F(u) — ¢ € X’ might be highly-irregular in the active set A,, but it is nonnegative.
In fact, the following lemma states the weak complementarity property associated to
obstacle problems (2.2); compare strong-form complementarity (1.1).

LEMMA 2.3. [25, Theorem II.6.9]. Suppose u € K solves (2.2). Then F(u) —{ =
dy, s a positive Radon measure supported in A,. Thus for w € X we have

(2.5) (Plu) = Ofu) = | wd.

Ay

Now let T;, be a shape-regular mesh partition (triangulation, etc.) of Q [1, 15].
Let X, C XNC(Q) be a conforming finite-dimensional FE subspace over Tj,. (Our ex-
amples will be piecewise-linear over triangles and tetrahedra: X, = P;.) Assume that
there is g, € A}, such that g, = g along 09Q. Let ¢, € &), be the FE obstacle, which
satisfies the compatibility requirement 1, < g5, along 9. Define the (nonempty) FE

admissible set

(2.6) Kn = {vn € Xh : vp > ¢y, and vp|on = gnloa}

Our FE method seeks uy, € K}, satisfying a VI problem which approximates (2.2):
(2.7) F(up)[vy — up] > llvp, —up]  for all v, € K.

The same argument given for (2.2) shows that this has a unique solution wy. Define
(2.8) I"={zcQ:up(x) >yn(x)}, Al=qQ\I1" TE=0nor",

the numerical sets corresponding to (1.2), defined a posteriori from solving (2.7).

Because Kj, C Xj, C X, we might regard (2.7) as a conforming FE method for
(2.2). However, this is subtle for an obstacle problem as it depends on the relationship
between v and vy,. If ¥y, is an interpolant of ¢ then Kj, =~ IC in some sense. Actually,
one should distinguish three levels of increasingly “conforming” admissibility:

1) KnZ K

ZZ) KncK

ZZZ) Kn=KnNnAa,
Ciarlet [14, Figure 5.1.3] observed early on that situation i) generally applies for an
interpolated obstacle ¥, = I1,v, e.g. for A} = P; and when ¥ is not convex. Situation
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ADAPTIVE MESH REFINEMENT FOR OBSTACLE PROBLEMS 7

i1) holds when v, > 1, which can be imposed by using a monotone injection operator,
e.g. “¢op, = RP¢” in the notation from [13]. (For related ideas, see [20] and the proof
of Theorem 5.1.2 in [14].) The strongest condition #3) holds if ¥, = ¢ exactly, for
example when ¢ = 0 in the porous dam problems considered by [2], and in Section 6.

In any case, the obstacle ¢ is given as data for VI problem (2.2) over K. As
illustrated in Section 5, point values of ¥ can be evaluated as desired to better-
represent u;, within the numerical active set A”. Over elements where there is active-
set correctness, namely K € 7y, such that K C A, NA”, the error e = u—uy = 1 — Yy,
can simply be regarded as unimportant. Alternatively, the approximation v =~ v can
be improved as needed by better interpolation of the data 1. As the goal for AMR
is to more-accurately solve the FE problem, refinement within a stabilized active set,
once an accurate free boundary has been found, is wasted effort.

These ideas are already implicit in a priori bounds for FE error in VI problems.
The following theorem generalizes the Falk bound [17]; see also [14, Theorem 5.1.1].
It can be extended further to address Fj, = F' [12, Theorem 6.3], but we will not need
such an operator approximation for our examples.

THEOREM 2.4. For 1 < q < oo, define the conjugate exponent ¢ = q/(q — 1).
Assume that F' is q-coercive and Lipschitz on bounded subsets of its domain. Suppose
u € K solves (2.2) and up, € Ky, solves (2.7). Let Ry = max{||ul|, ||un||}. Then there
is a constant ¢(Ry) > 0, not otherwise depending on u or uy, so that

2
2.9 —up||? < —| inf — dp, inf — ) dpy
29wl 2 ([ emmdnt st [ o-va

Ry) inf o, —ul? ).
Felt) inf o)

Proof. For arbitrary v € K and v, € Kp, rewrite (2.2) and (2.7) as F(u)[u] <
F(u)[v]+£[u—v] and F(up)[un] < F(up)[vp] +£[un —vp], respectively. It follows from
these inequalities, and g-coercivity of F', that

(2.10) oflu—upl|* < (F(u) = F(un)) [u — up
= F(u)[u] + F(un)[un] — F(u)[un] = F(un)[u]
< F(u)[v] 4+ Lu — v] + F(up)[vn] + LJun, — v
= F(u)[un] — F(un)u]
= F(u)[v —up] — v — up] + F(up)[vn, —u] — L{vp, — u]

= (F(u) =€) [v—up] + (F(u) = £) [on — 4]
+ (F(u) = F(un)) [u— v

Since u,up € B, = {w € X : |Jw|| < Ry}, by the Lipschitz assumption (2.4) there
is C(Rp) > 0 so that the last term from (2.10) has bound

(2.11) (F(u) = F(un)) [u—vp] < C(Rn)llu — up|l[|u — on.-
Now use Young’s inequality with € > 0 [16, Appendix B.2] on (2.11). We have:

(212)  afu—ual < (F(w) ~ 0) [0 un) + (F(u) = ) [on — u]
+ C(Ra) (ellw = un|* + C(€)Ju — va])

This manuscript is for review purposes only.
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8 G. S. FOCHESATTO AND E. BUELER
where C(e) = (eq)~9/9¢'~". Choose € > 0 so that C(Rp,)e < /2. Then

o ~ /
(2.13) Sllu—unl* < (F(u) =€) [v —up] + (F(u) = £) [vn —u] + C(Bn)C(€)|u — val|*

Apply Lemma 2.3 and take infimums to show (2.9). |

Consider the unconstrained PDE case of (2.9), namely when 4, = 0. In this
case the bound is simply Cea’s lemma (quasi-optimality) for g-coercive operators:
llu — up|| < infy,ex, [Jvn — /@D, Tt is standard in FE theory [1, 15] to address
this bound by solution regularity and interpolation theory.

If ¢, > ¢ then Kj, C K, and so the first term on the right of (2.9) can be replaced
by zero. In this case bound (2.9) adds a single term to Cea’s lemma, which is nonzero
when v, € K}, is blocked by vy, from descending close to the continuum obstacle
in the active set A,. Thus this term is large if 1), is substantially above 1 in A, or
if du,, is large in A,. However, if the FE method has generated a numerical active
set which is accurate, A" ~ A, the errors in the active set are irrelevant because the
data 1 is available to the solver.

A priori error bound (2.9) is further clarified in the p = 2 and ¢ = ¢’ = 2 case,
the classical obstacle problem. The bound can then be split between integrals over
the (exact) active set and inactive sets.

COROLLARY 2.5. Suppose all the hypotheses of Theorem 2.4. Assume that p =
q =2, and that 1 € C1(Q). Up to constants which depend on u and uy,, we may write
the a priori bound with four integrals,

1) =l St [ ) dpt it [ v,
+ inf </ |V, —Vw|2dx+/ |V, —Vu|2dx>
VR ERX Ay I
Proof. Apply Poincare’s inequality to the final term in (2.9). 0

Consider the first two integrals in bound (2.14) from the point of view of AMR.
Their size is determined partly by the action of F' on the continuum obstacle, and
partly by the source term ¢. However, because they are over the active set A,,
neither integral, nor the third A, integral, requires mesh refinement so as to improve
the quality of the FE solution, as long as the mesh and solver have accurately located
the free boundary. This observation suggests why the primary goal of AMR for VIs
should be to generate close approximation I'" ~ I',. Computation expended on
better approximation of the data 1 in A, can be avoided if the free boundary is
accurately resolved. This is easiest to exploit within the class of unilateral obstacle
problems described in Appendix A, which includes the 1» = 0 case of the classical
obstacle problem (1.4) and the glacier problem of Section 6. In such problems one
may preprocess the data, noting all the areas where the source term is negative, and
then systematically avoid unnecessary active set refinement.

However, in order for I'" ~ T, to be an accurate approximation, the interior
condition of the VI, over I,,, must be accurately solved. (This gives the significance of
the final integral in (2.14).) Our AMR approaches will systematically refine on both
sides of the computed free boundary I'?, and generally in the inactive set I".

3. A posteriori error estimation in the inactive set. For u € X solving VI
(2.2), an interior condition PDE holds in the inactive set I,, [25]. Our AMR strategies
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ADAPTIVE MESH REFINEMENT FOR OBSTACLE PROBLEMS 9

(Section 4) do a posteriori refinement in the geometric vicinity of the free boundary,
but we will also need to exploit a posteriori error indicators for the interior condition
to achieve convergence. We consider two such PDE-type indicators.

Example 3.1. Suppose X, = CGy, is the continuous, piecewise-polynomial FE
space of degree k, and consider u;, € Xj. Noting Vuy is discontinuous, but well-
defined on each element, define J, = DGy_; for the (scalar) discontinuous space with
polynomial degree k — 1, so that Vuy, € V¢ (vector-valued). Suppose there is a linear
operator G : X), — X, into the continuous space, called gradient recovery (GR)
[1, Chapter 4], so that G(up) = Vuyp in some sense. Over an element K € 7Tp, the
corresponding error indicator nx > 0 is then

(3.1) nizﬁﬂmm—v%ﬁ

We also define 7* = 7 .- 1% For certain gradient recovery methods G, when they
are applied to the Poisson equation, we find that n ~ |u — up|g: (energy norm) as
h — 0 [1, Theorem 4.4].

Our application of GR in Section 6 will simply use orthogonal projection in L?
for the map G. That is, G(uy) € X is defined to be the minimizer of

(3.2) J(w) = /Q lw — Vup|* dx.

In this application &), = CG1, Vuy, is in vector-valued DGy, and G(uy,) is in X,
The second indicator, applied in Section 5 to classical problem (1.4), is a well-
known explicit error estimator [1, Chapter 2].

Ezample 3.2. Suppose u € H'(£2) solves the weak form Poisson equation a(u, v) =
Jq fvdx for all v € H(Q), with a(u,v) = [, Vu - Vudz and u = g on 99. Suppose
that up € &), = CGy solves the corresponding finite-dimensional weak form. For each
element K € Tj,, define ng as the unit outward normal vector on K. For a pair of
elements L, K incident to an edge «y, and any vector field Z with traces Zj, Zx on -,
let [Z-n] = Z -np + Zk - nk be the jump of Z on v. Given the (strong) residual
r(up) = —V2uy, — f of the Poisson equation, well-defined within each element K, the
Babugka—Rheinboldt (BR) [4] error estimator is

h
(33 vk =t [ )P do+ Y [ [Vannl? ds,
K ~ear\an T

where hg is the diameter of K. It can be shown [1, Chapter 2] that the energy error
is bounded by 7* = Y ot Mk

(3.4) lu — up|3 = / |V (u — up)|? de < Cn?.
Q

Similarly the L? error can be bounded by an estimator, which replaces the powers in
(3.3) by hi, h3., respectively [1, Section 2.4].

For the results in Sections 5 and 6, whether 7y is computed as in Example 3.1 or
3.2, we will treat the values 7 as local element-wise error estimators. The set {nx}
will be thresholded to providing tagging of elements for refinement; see [6, Section 4.2]
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10 G. S. FOCHESATTO AND E. BUELER

for a discussion of techniques. In our applications, all (computed) inactive elements
satisfying ng > @ maxng, for 0 < 8 < 1, will be tagged and refined.

The BR error estimator for the interior condition is explicit and easily-computed.
Ainsworth, Oden, and Lee [2] extend it to certain obstacle problems, but with heuris-
tic aspects. On the other hand, for certain PDE problems, alternative estimators
are provided by the dual weighted residual technique [6]. These are defined using a
particular quantity of interest and some approximately-computed nonlocal weights,
essentially Green’s functions of the adjoint PDE. Suttmeier [32] has extended this
weighted residual technique to certain VI problems, but it also requires heuristic
steps even for the classical obstacle problem. In this paper we avoid the complexity of
such techniques, and instead take a pragmatic approach which combines refinement
near a computed free boundary with application of a PDE-type error estimator, as
above, within the computed inactive sets.

4. New adaptive mesh refinement strategies. Our first two adaptive mesh
refinement (AMR) methods, Algorithms 4.1 and 4.2, do targeted refinement near
the free boundary. They are of tag-and-refine type. The third metric-based mesh
adaptation approach [33], Algorithm 4.3, is more expensive.

These methods all start from a computed solution u, € K; C A} to problem
(2.7). Specifically we need only the mesh 7y, the obstacle ¢, € X}, and uy. The
following two concepts are fundamental.

DEFINITION 4.1. Denote the vertices of Tr, by x;. Given up > vy, and a tolerance
tol > 0, the nodal active set indicator is the unique v, € X}, satisfying

vn(zj) = {1’ up(x;) — Yu(z;) < tol

0, otherwise.

DEFINITION 4.2. An element marking of 7 is a piecewise-constant indicator
function 1j, € DGo(Ty) with values in {0,1}.

For PDE problems,and element marking can be derived from an error estimator
7K, as in the previous Section, associated with a quantity of interest such as energy
or L? norm error [6]. However, a primary quantity of interest for obstacle problems
is vicinity to the unknown free boundary. We do not associate this concept with a
precise functional. Instead Algorithms 4.1 and 4.2 proceed heuristically to convert a
nodal active set indicator into an element marking, with the goal of improving the
approximation of the free boundary.

Queries of PETSc DMPlex objects [26] will also be needed, so let us sketch how
this class supports unstructured meshes. A DMPlex object stores the topology (con-
nectivity) of a dimension d = 1, 2,3 mesh. Every mesh entity, regardless of dimension,
is assigned a unique index. Mesh connectivity is understood as a stratified directed
acyclic graph, where a covering/incidence relationship between mesh entities deter-
mines the graph edges. For example, a triangle within a 2D mesh is covered by
its three edges, which are covered by their two endpoints (vertices). Each stratum
(“height”) in the DAG represents a dimensional class of mesh entity; for example the
cells, edges, and vertices in a 2D mesh are at heights 0, 1, 2. Given the index p of
a mesh entity, the basic DMPlex queries [5] are cone(p), the set of indices of entities
which cover entity p, and its dual support(p), the set of entities which are covered
by p. The transitive closure of cone is closure(p), and that of support is star(p). In
our application we need only the vertices in the element closure; we denote this as
closure” (k). Similarly, stary(j) extracts only elements in the star of vertex x;.
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Now we can define the Unstructured Dilation Operator (UDO) method, Algorithm
4.1. Tt first computes a nodal active set indicator vy, from wj. Denoting the degrees
of freedom in DG(7r) by xk, it then finds the set of indices k of elements such that
0 < vp(zk) < 1. If up € CGy then this condition holds when the element is incident
to both active and inactive vertices. Then the method alternates closure and star
on the marked element set n times, expanding the marking by n element layers, to
generate a final element marking 1;,. The motivation here is that if the approximation
up = u is good for a non-degenerate VI problem (2.2) then the true free boundary
T",, should pass through the elements indicated a posteriori by 1. In Sections 5 and
6 we will only consider n = 1,2, as this much expansion seems to suffice for accurate
representation of the free boundary after a few refinements.

Algorithm 4.1 Unstructured Dilation Operator (UDO) element marking

Require: mesh 7, solution up € K, obstacle v, € A}, tolerance tol > 0, and
expansion parameter n > 1.

: Compute nodal active set indicator v, € X, for uy,.

2: Find initial element index set So: k € Sy if vp(zx) € (0,1).

3: fori=0,...,n—1do

—

S¢+1 = U U starv(j)

k€S, jeclosure” (k)

4: return marking 1;, € DGq(73) of all elements with indices in S,,.

While the UDO strategy explicitly manipulates indices, our second strategy, called
Variable Coefficient Diffusion (VCD), Algorithm 4.2, is based on continuum ideas.
Again the first step is to compute a nodal active set indicator v, € CGy. This func-
tion is used as the initial condition of a time-dependent, variable-coefficient diffusion
equation,

s

(4.1) 5= V- (DVs), s(t=0) =y,

with Neumann (natural) boundary conditions, a well-posed problem. Clearly a solu-
tion of (4.1) at t > 0 is a smoothed form of v,. The diffusivity is set to the square
of the element diameter hy, namely D = Ch3. € DGy, with C = 0.5 by default.
The diffusion range is thus proportional to element diameter. In fact (4.1) is not
solved exactly, or even very accurately, as we only compute s, € X} from a single
backward-Euler step of duration At = 1, equation (4.2) below. The default solver for
this linear and elliptic problem is four iterations of conjugate gradient, preconditioned
by incomplete-Cholesky factorization [11]. This inexpensive approximate solver has
linear complexity in the vertices.

Figure 4 illustrates how the VCD algorithm applies to a one-dimensional obstacle
problem. Note that the thresholds a and 8 are key parameters, with defaults o = 0.2
and B = 0.8. Lowering o toward zero expands the marking further into the inactive
set, away from the (computed) free boundary, while increasing 5 toward one expands
further into the active set.

It turns out to be helpful, e.g. when solving the highly-nonlinear obstacle problem
in Section 6, to add a minimum element diameter h,;, to Algorithms 4.1 and 4.2. That
is, after running one of the above Algorithms, we may un-set the element marking,
1,k =0, of any element with hx < hpin.
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Algorithm 4.2 Variable Coefficient Diffusion (VCD) element marking

Require: mesh 7Ty, solution u;, € K, obstacle ¥, € A}, tolerance tol > 0, and
threshold interval 0 < a < 8 < 1.
1: Compute nodal active set indicator v, € X}, for uy,.
2: For hi the element diameter, let D = 0.5h% € DGo (7).
3: Approximately solve for s;, € X}, with natural boundary conditions:

(4.2) sp — V- (DVsy) =y

return marking 15 € DG (7p) of all elements such that s, (zx) € (o, 5).

b
(b) .
(c) (d)
Af—le~~e\ﬂ 5 =0.8 ————— 1 ——— ——
/ \a:O.Q
o e e e O O = O == ———

Fic. 4. Illustration of VCD: (a) Numerical solution up, (solid), with nodes x; shown (solid
dots), and obstacle vy, (red dashed). (b) Nodal active set indicator vy, € CG1(Tp). (c) Smoothed
indicator sp,, with element degrees of freedom xy, (circles) and thresholding levels (red). (d) Element
marking 1y ; here 4 elements are marked for refinement.

From an element marking 15, we then apply skeleton-based refinement (SBR) [29]
to generate a refined mesh. Elements with 1;, = 1 are refined, and any other elements
as needed to avoid hanging nodes. Two SBR implementations are available, namely
from PETSc DMPlex [5] and from the Netgen library [8]. Only the latter is currently
capable of 3D refinement.

Our third AMR method, called averaged-metric (AVM; Algorithm 4.3), uses
metric-based mesh adaptation [3]. In contrast to tag-and-refine methods, mesh adap-
tation generates a new mesh matching resolution and complexity targets. Adaptation
is driven by an a posteriori metric field, defined as a continuous, matrix-valued func-
tion M, : © — R?*9 with each value Mj, () a symmetric and positive-definite matrix.
Such a metric contains local information on distances, areas, and volumes [28]. From
the metric the mesher itself generates a unit mesh [3]. In the original space the refined
mesh has variable edge lengths and element aspect ratios.

AVM again starts from uy and . The first metric is isotropic, and it is com-
puted from the gradient of a smoothed nodal active set indicator, namely s; from the
VCD method (Algorithm 4.2). The second metric is anisotropic, computed as an ap-
proximate Hessian of up, via a Hessian-recovery technique [3]. (Actually the absolute
value of the Hessian is used, which well-defined for a symmetric matrix [33].) These
metrics are in the matrix-valued CG; FE space, with metric normalization constants
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computed from target complexity and element diameter bounds in a standard man-
ner [33]. By construction, the first metric should generate small elements near the
free boundary, while the second should reduce FE approximation error in the inactive
set, according to the standard interpolation theory [14]. In AVM the final metric
is a weighted average of the two metrics. This final metric is both anisotropic and
free-boundary focussed, and it implies refinement in both the active and inactive sets.
Our implementation calls the Animate library (github.com/mesh-adaptation/animate)
to construct, normalize, and average the metrics, and the Pragmatic library [19] for
meshing at the last step. Note that steps 2 and 3 in Algorithm 4.3 use the target
complexity and element diameter bounds parameters.

Algorithm 4.3 Averaged-metric (AVM) mesh adaptation

Require: mesh 7j, solution u;, € Ky, obstacle ¥, € X}, target complexity N, ele-
ment diameter bounds 0 < hpin < hmax, and averaging weight 0 <y <1
Compute sp € Xp from Algorithm 4.2, using uy, and y,.

Compute normalized isotropic free-boundary metric: Mi(x) = ¢1|Vsp(2)|[Iixd-
Compute normalized anisotropic metric from Hessian: My (z) = co| Hup ().
Average the metrics: M (x) = yMi(z) + (1 — v)Ma(z).

return new mesh 7, which is unit with respect to M (z).

The right-hand image in Figure 3 (Introduction) shows an AVM result on the
“ball” obstacle problem; see Figure 2, middle. Note that iterating the AVM method,
even while holding the target mesh complexity constant, can be worthwhile because
the increased resolution near the free boundary allows the a posteriori metric to be-
come more effective. A key idea when iterating AVM is that cross-mesh interpolation
[18] provides a high-quality initial iterate on the new mesh. Because of the nontrivial
computations needed in metric-based methods [3, 33], at high resolution one AVM
iteration is notably more expensive than an iteration of UDO or VCD.

All three Algorithms run in parallel under the MPI protocol used by Firedrake
[26] and PETSc. However, only UDO produces results which are independent of the
number of processes. The default preconditioned Krylov solver in VCD is slightly-
dependent on process count [11]. Choosing a direct solver for problem (4.2) would
give the VCD method process-independence, but it would also reduce scalability.

We end this Section with two Python examples which illustrate how to use the
open source VIAMR library (github.com/StefanoFochesatto/viamr).

Ezample 4.3. Consider Example 1 from [2], a classical obstacle problem over a
rectangle, with obstacle ©» = 0 and a known exact solution. The code below applies
the Firedrake and VIAMR libraries to solve this problem. First it generates a uniform
coarse mesh, then it applies VCD marking near the free boundary, and then it refines
to a new mesh (Figure 5). There is no refinement in the inactive set, which is necessary
for convergence; compare Example 4.4, and see the next Section.

from firedrake import =*
from viamr import VIAMR

mesh = RectangleMesh(6, 12, 0.5, 1.0)

x, y = SpatialCoordinate (mesh)

r=(x+ 1.0) %k 2 + y %% 2

uexact = conditional(r < 2.0, 0.25 * r - 0.5 - 0.5 * 1n(0.5 * r), 0.0)
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V = FunctionSpace(mesh, "CG", 1)

uh, vh = Function(V), TestFunction(V)

F = inner(grad(uh), grad(vh)) * dx - Constant(-1) * vh * dx

bcs = DirichletBC(V, Function(V).interpolate(uexact), "on_boundary")
problem = NonlinearVariationalProblem(F, uh, bcs)

sp = {"snes_type": "vinewtonrsls"}

solver = NonlinearVariationalSolver(problem, solver_parameters=sp)
psih = Function(V).interpolate(0.0)

INF = Function(V).interpolate(Constant (PETSc.INFINITY))
solver.solve (bounds=(psih, INF))

amr = VIAMR()
mark = amr.vcdmark(uh, psih)
VTKFile("mesh.pvd") .write(uh, mark)

refinedmesh = amr.refinemarkedelements(mesh, mark)
VTKFile("refinedmesh.pvd") .write(refinedmesh)

Fic. 5. The Python code in Ezample 4.3 solves Ezample 1 from [2]: initial mesh (left),
marking by the default-parameter VCD scheme (middle), and the refined mesh (right). The exact
free boundary, unknown to the algorithm, is overlaid in black.

Example 4.4. The following snippet was used for the left-hand mesh in Figure 3:

amr = VIAMR()

fbmark = amr.udomark(uh, psih, n=1)

residual = -div(grad(uh))

imark, _, _ = amr.brinactivemark(uh, psih, residual, theta=0.7)
mark = amr.unionmarks(fbmark, imark)

refinedmesh = amr.refinemarkedelements(mesh, mark)

Here the UDO method is used to mark near the free boundary, then the BR error
indicator (Section 3), from a computed element-wise residual, is applied for marking
in the inactive set. Finally the marks are unioned and a new mesh is generated.

5. Results on classical obstacle problems. We start this Section with a
revised look at how numerical errors should be measured for obstacle problems, and
then we show convergence and performance results on some examples. Section 6 will
show results for a more-challenging, non-classical obstacle problem.
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In order to measure the quality of the approximate sets (2.8), versus the exact sets
(1.2), and to determine rates of geometric convergence, the VIAMR library computes
a distance between sets. Our implementation of (5.1) below is based on Firedrake’s
supermesh concept [18], so it is computable for sets S, T which are unions of elements
from different meshes, and/or for sets defined by algebraic (conditional) expressions
in the mesh coordinates.

DEFINITION 5.1. The Jaccard distance [27] between measurable sets S,T C Q is

|SNT|

(5.1) a(s,T)=1- SUT]

where | - | is Lebesque measure, with d(S,T) = 0 by definition if |SUT| = 0.

We will use Jaccard distance to compare active sets. If d(S,7") = 0 then S and
T geometrically agree up to a set of measure zero, and for a computed active set A",
defined by an element marking (Definition 4.2), we will report d(A”, A,) when A, is
exactly known.

A second goal for numerical solutions of obstacle problems is to avoid wasted
effort in the active set, once the free boundary is well-resolved. As already discussed,
if I ~ T, is a good approximation then the obstacle data itself, namely 1, can
be used to represent the solution in the computed active set A”. This motivates a
definition.

DEFINITION 5.2. Suppose the original VI problem (2.2) has exact obstacle ¢ €
X NC(Q). Consider a computed solution uy, to the approzimating problem (2.7),
with computed active set A, a union of closed elements. We define the preferred
approximation uy as the measurable function

~ Y(x), xe Al
(5.2) ap(x) = (z) )
up(x), otherwise.
For a classical obstacle problem (1.4), the preferred approximation iy, is in L?((2).
It is generally discontinuous, even when Xj, = CGy, thus iy, ¢ H'(Q2). However, 4y, is
defined without reference to the exact solution to problem (2.2); only the continuum

data 1) is referenced. The L? error relative to 7y has a clear decomposition over the
sets defined in (1.2) and (2.8):

(5.3) ||u—ahué=o+/ |w—uh\2+/ \u—w|2+/ e — wun .
A \AR AR\A, I,NIhk

u

The leading zero comes from the integral over A, N A", where u = @, = 9. The next
two terms are small if the free boundary has been accurately located (I'* ~T',), the
goal of AMR in Section 4. The final term is small if inactive-set refinement is effective
(Section 3). The next example shows that our methods converge in norm (5.3).

Ezxample 5.3. Consider the “ball” classical obstacle problem shown in Figure 1 and
Figure 2 (middle), which has a known exact solution [11, Chapter 12|. Algorithms 4.1
(UDO) and 4.2 (VCD) were applied to this problem, combined with inactive-set mark-
ing based on the BR error estimator (3.3). These methods, denoted UDO+BR and
VCD+BR, avoid refinement in the active set, except near the estimated free bound-
ary. We also applied mesh adaptation Algorithm 4.3 (AVM), setting mesh complexity
targets to closely-match the number of elements from the other Algorithms; note that
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AVM refines everywhere. The experiment started from a coarse uniform mesh over
the square domain, and applied 11 levels of AMR, so that the number of elements
increased by four orders of magnitude. We also compared uniform refinement.

As shown in Figure 6, our AMR methods are clearly superior to uniform refine-
ment when evaluated by active set Jaccard distances d(A”, A,). At higher resolutions,
all three AMR methods reduce this distance an order of magnitude below uniform
refinement. While AVM produces the best meshes by this measure, its runtime is
about an order of magnitude higher at comparable mesh complexity (not shown).

0 ® UDO+BR
w0l @ O VCD+BR
O+? +© N ¢ A
. @ + +  uniform
1072 4 ® +
¢ . ® L
® +
¢ o
¢ ®
¢ ©®©
10-% 4 0 0 @
10 10 10e|ementlst) 10/ 10

Fic. 6. Active set Jaccard distances d(AR, A,).

On the other hand, Figure 7 (left) shows that L? convergence using the standard
error norm |[u — upl|2 stagnates for the UDO+BR method. This is entirely due to
the contribution from the active set, i.e. from [¢)(z) — 1y, ()| for x € A", over meshes
which have deliberately not been refined in A". If we compute the L? error relative
to the preferred approximation for the same meshes, namely ||u — 4|2 as in (5.3),
then the convergence is better than from uniform refinement, in a per-element sense.
Results from VCD+BR are virtually identical, and thus not shown.

As shown in Figure 7 (right) for the AVM algorithm, because of its active set
refinement, standard (|ju—up||2) and preferred (||u—a4||2) error norms are comparable.

H |
]
10725 | BN 10-2 4 1 4
fE eeeccsccnee
1+
5l
10 L 10-7 1 ']
. f
+
1074 § u pa . +
+ f
= £
w04 @ |lu-unllz m + ® |ju—unll2 2
B ||u= Ol m ws W ||u=dall2 i
+ (unif .t + (unif
1075 1 |l = unl|2 (uniform) - ||u = up|]z (uniform) '
10? 10° 10* 10° 108 107 102 10° 10* 10° 108 107
elements elements

Fic. 7. Left: L? norm errors for the UDO+BR method, versus uniform refinement. Right:
The same norm errors for the AVM method.

To illustrate some additional mesh and performance features of our AMR ap-
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proaches, we consider three more classical obstacle problem examples. These do not
have known exact solutions.

Ezample 5.4. Consider the spiral example on Q = (—1,1)? from [20, subsection
7.1.1], shown in Figure 2 (left). This example has source term f = 0, homogeneous
boundary values ¢ = 0, and a nontrivial obstacle ¢/. The active set is small in area
while the free boundary is long. A result from applying the UDO+BR approach is
shown in Figure 8. (Results from VCD+BR and AVM approaches are very similar
and not shown.) The free boundary is well-resolved, but there is no performance
advantage from avoiding refinement in such a small active set.

Fic. 8. A refined mesh for Example 5.4, with 2 x 10° elements, from seven levels of the
UDO+BR approach, starting from an initial uniform mesh of 200 elements. Element diameter
(resolution) is h = 1073 along the free boundary.

Ezample 5.5. Consider the example shown in Figure 2 (right), which has a large
active set. Here Q = (0,1)? and ¢ = g = 0 in (1.4). The source term f is a sum
of small-variance gaussian peaks against a negative background value; see the code
for details. The blistering property (Appendix A) applies, so inactive set components
necessarily include a f > 0 portion. The inactive set has six connected components,
but this is only revealed at high resolution. Figure 9 shows the result of applying the
VCD+BR method, giving a mesh with 100 times fewer elements than a uniform mesh
with the same free-boundary resolution. Similar to the glacier example in the next
Section, in this case the avoidance of active-set refinement gives a distinct performance
advantage. The result from UDO+BR is very similar, and not shown.

Ezxample 5.6. Our third example is a free-boundary variation of the classic L-
shaped Laplace equation problem with an interior corner. Here the obstacle ¢ is the
upper unit hemisphere, centered at the origin, and the domain is Q = (—2,5)?\ S
where S is a 3 x 3 square in the lower right corner. Since f = 0 and g = —1, the
Laplace equation is solved in the inactive set, with unbounded solution Hessian in
the interior corner. A result from AVM, starting from a coarse unstructured mesh,
is shown in Figure 10. (Again the other methods produce similar results.) Though
the exact free boundary is not known, it resolves into a smooth and nearly-circular
curve. At the same time there is refinement in the interior corner. This example shows
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Fic. 9. Left: A mesh for Example 5.5 of 4.7 x 10° elements, with resolution h ~ 10~3 along
the free boundary, from four levels of the VCD+ BR approach, starting from a uniform mesh of 1800
elements. Right: Zooming-in reveals inactive-set refinement, and separation of components.

559 that free-boundary localization and classical PDE refinement goals are simultaneously
560 addressed.

Fic. 10. A refined mesh from three iterations of AVM Algorithm 4.8 on Example 5.6, showing
a well-resolved free boundary and refinement in the interior corner.

561 6. Application to determining glaciated land areas. In this section we
562 apply our AMR techniques to a model for the steady geometry of a glacier, over a
563  given bedrock topography and subject to a given climate. In particular, this model
564  solves for which land is covered by ice. Though glacier ice will cover any land on which
565 snowfall exceeds melt, ice flow expands the glaciated area out to a free boundary, the
566 glacier margin, which can only be found from conservation equations. In fact, any
567 fluid layer subject to surface processes which add or remove mass is governed by a
568 related model [10]. In these VI problems, which generally are not of optimization
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type, the unknown fluid thickness must be nonnegative, the operator is nonlinear,
and the blistering property (Appendix A) applies.

Let Q C R? be a fixed land region, with bedrock elevation b € C*(Q) and a
surface mass-balance [21] function a : Q@ x R — R. The value of this climatic function
is the annually-averaged rate of ice accumulation (snow) minus melt and runoff. If a
depends on the surface elevation s then we suppose that a(z,y,s) € L= (Q) for any
s € L*>(Q), and additionally that a is Lipschitz continuous in s.

We use an ice flow approximation called the shallow ice approzimation [21], de-
rived by a small aspect ratio argument from mass and momentum conservation, in
its simplest isothermal and non-sliding case. Applying the standard exponent for
the shear-thinning flow law of ice [21], we have a VI for admissible transformed ice
thickness functions u € X = {u € X : u > 0 and u|gq = 0}, in the Banach space
X = W'4(Q) [22]. The thickness itself is H = u3/%, while the surface elevation is
s = H+b=u%4+0b. The model is a VI based upon a “tilted” variation of the
p-Laplacian operator [22]:

(6.1) /QF|Vu + Bw) 2 (Vu + Bw)) - V(v —u) — a(u)(v — u)de > 0

for all v € K. Here I' > 0 is an ice softness constant, the tilt B(u) = $u®/®Vb is a
nonlinear multiple of the bed gradient, and a(u) = a(z,y, u*/8 +b) denotes the surface
mass balance. If a has no s dependence then we may treat it as the source term, and
write “F(u)[v — u] > ¢[v — u]” as in (2.2), but otherwise we simply set £ =0 in (2.2).
If also Vb = 0 then (6.1) defines a nonlinear operator F'(v)[w] which is 4-coercive; see
Example 2.2. Regarding the mathematical theory of (6.1), existence holds for any
b when a is independent of s [22]. Simple cases of non-existence are known when
a depends on s [23], but our examples below have slow increase of snowfall with
elevation [21], which avoids this issue, and we suppose the solutions below are unique.

The strong-form interior condition for (6.1) is a conservation equation, namely
V -q = a over I, where the flux is given by

(6.2) q=-T|Vu+ Bw)|*(Vu + B(u)).

At the free boundary (glacier margin) the solution u, the solution gradient |Vu|, and
the flux q all go to zero. On the other hand, observations confirm that the gradient of
a glacier’s surface has large magnitude as one approaches the margin from the ice side,
a property which emerges from (6.1) when one differentiates the associated surface
elevation s = u3/® + b. Generally |Vs| — oo at the glacier margin.

We apply a conforming, continuous, piecewise-linear FE method to (6.1), over
unstructured triangulations. The FE problem is either solved directly by the same
VI-adapted Newton solver used in Section 5, namely vinewtonrsls in PETSc [5]) ,
or with an added outer Picard-type iteration over the tilt B(u) [22] and source a(u),
with Newton as the inner iteration. The Newton steps are solved using Firedrake’s
default direct linear solver. Very similar results are obtained when these iterations
both converge, but the Picard-based solver is more robust when |Vb| is large or a
depends on u.

We consider two particular problems, each over a square domain Q = (0, L)? with
L = 1800 kilometers. The first “dome” problem has a flat bed, elevation-independent
source, and a known exact solution [9]; this is used for verification and to compare
AMR algorithms. The second problem has a bumpy bed and an elevation-dependent
surface mass balance function.
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Ezample 6.1. The dome problem was solved with 13 levels of refinement from an
initial, uniform hg = 360 kilometer mesh to a final mesh with glacier margin resolution
of hy3 = 30 meters. Both UDO and VCD methods (Algorithms 4.1 and 4.2) were
applied, with gradient recovery (GR; Example 3.1) marking in the inactive set,! and
the results were very similar. Because the obstacle is ¢y = 0, the preferred (5.2)
and standard numerical solutions are the same. Figure 11 shows relative H' errors
in the solution (|lu — up||z1/||ullg1) and absolute L errors in the corresponding ice
thickness (||H — Hp|| L), versus number of elements. The latter errors are much more
responsive to AMR because the ice thickness gradient is singular at the free boundary.
That is, Figure 11 right is primarily reporting (lateral) margin location errors. In
fact, similar to the Jaccard distances reported in Example 5.3, Figure 12 shows the
maximum radial error for the numerical margin. We see that our AMR methods are
quite efficient for free-boundary localization, compared to uniform refinement.

10°

101 {@® ® UDO+GR ® o ® UDO+GR
(O VCD+GR
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@ -+ uniform 5 -+ uniform
10724 1 2
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Fic. 11. Left: Relative H' norm errors in u are comparable for AMR and uniform refinement,
in a per-element sense. Right: AMR is very effective for the maximum thickness error.
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Fic. 12. AMR generates accurate free-boundary locations. To achieve tens of meters accuracy,
as here, uniform refinement would use orders of magnitude more elements.

Ezxample 6.2. The next example is more realistic. It uses a bumpy bedrock to-
pography b(z,y), constructed from a finite sum of sinusoids [13, Example 8.4], and a
surface mass balance function a(s) which depends only on surface elevation; see the

INote that the argument for BR marking given in Section 3 does not apply here.
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source code for details. An important parameter in the formula for a(s) is the equi-
librium line altitude (ELA) [21], denoted so, with a > 0 above this altitude and a < 0
below. To illustrate this parameter, Figure 13 shows the topography along a transect
x = Z, the red line in Figure 14, with three sy values superimposed. Net snowfall
a > 0 occurs on a solution-dependent set S = {(z,%) : u(x,y)*8 +b(z,y) > so}, and
glaciation then extends beyond S because of flow: I,, D S. The difficult nonlinearities
in model (6.1) include this elevation-dependent surface mass balance, but also the
u®/® dependence in the tilt B(u). Among the effects of the latter is the tendency of
ice to pool in bedrock elevation lows. Our primary goal in this example is to generate
an accurate map of glaciation, i.e. of the inactive set I,,. Related goals are to compute
the ice volume V = [, u3/® dx dy, and to find the number of connected components
of I, that is, the number of glaciers in the given climate.

1000 m
800 m
600 m

Fia. 13. Bedrock elevation (solid) along a transect, with three ELA levels sq.

We again applied UDO, with n = 2 expansion, plus GR marking in the inactive
set to resolve ice flow. Using a minimum element diameter hp;, = 500 meters, the
final meshes averaged 300 meter resolution along most of their margins. The solution
surface elevation maps for the three ELA values are shown in Figure 14. The very
different ice volumes, 1.1 x 10%, 5.6 x 10°, and 8.9 x 10° cubic kilometers, respectively,
reflect the strong ELA sensitivity of realistic glacier models [21].2

Fic. 14. Glacier surface elevation (grayscale) for ELA of 1000 meters (left), 800 meters
(middle), and 600 meters (right). Inset bozes are 200 km across; see Figure 15.

Figure 15 shows details of the meshes along sample portions of the glacier margins.
It is key to observe that under the UDO+GR approach the mesh was not refined in the
vast majority of the active set, and this represents a significant efficiency. That is, we
did not waste computational effort (e.g. elements) on modeling ice flow in unglaciated
areas. In fact this highly-nonlinear problem causes this AMR algorithm to work quite
hard to pin down the glacier margin, as only once the flow on the inactive side of the
margin is resolved at high resolution will margin location stabilize.

2Compare the volume of the present-day Greenland ice sheet at 2.9 x 10% cubic kilometers.
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Fic. 15. Details of refined meshes (red) along glacier margins, from the inset bozes in Figure
14, for the same ELA values. The dark areas are coarsely-meshed ice-free areas, i.e. active sets.

7. Discussion. It is well-known that inequality-constrained obstacle problems
are intrinsically nonlinear, thus that solution methods must be iterative. At a basic
level our AMR methods simply extend the mandatory iteration to the generation of
sequences of well-adapted unstructured meshes.

The UDO and VCD Algorithms from Section 4 combine two relatively-simple
tagging strategies based a posteriori on the numerical solution:

i) assuming u; and v, can estimate the true free boundary I',, mark nearby
elements on both sides of the computed free boundary T'?, and

i1) assuming wuy approximates the true solution u in the computed inactive set
I, mark elements in this set using PDE-type error estimates (Section 3).

AVM Algorithm 4.3 uses the same essential heuristics to generate a metric, which
enables mesh adaptation.

Our AMR strategies are tied to the a priori theory in Section 2. On the other
hand, we have no direct, quantitative theory of how they reduce numerical error. Ob-
serve that i) has nothing directly to do with the regularity or residual of uy; refinement
is geometrical in the domain. On the other hand, ii) could be done by methods of
arbitrary sophistication. For example, dual weighted residual methods [6, 32] could be
applied, although their adjoint-type weights are incapable of communicating informa-
tion between disconnected components of the inactive set, the number and geometry
of which are only found at solution time. (Example 5.5 is an example.)

For classical obstacle problems, the mesh sequences built by our AMR techniques
allow the bulk of the Newton iterations to occur inexpensively on the coarse early
meshes. However, for harder problems like the glaciation obstacle problem in Section
6, the solver and AMR components strongly interact. Nontrivial solver iterations are
needed on intermediate meshes, to find and stabilize the free boundary.

An important extension of our work would be to find effective refinement strategies
for time-dependent obstacle problems and parabolic VIs. Also, performance could
be improved by integrating AMR into a multilevel solver, though this is also for
future research. For example, the solver in [13] uses coarse meshes to make large
corrections, including geometrically to the free boundary, and so a combination with
AMR promises highly-scalable solutions of difficult obstacle problems.
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Appendix A. Obstacle problems with the blistering property.

In a classical, unilateral obstacle problem (1.4) an upward force f(z) > 0 may
occur in the active set A,. Physically speaking, in such a case the upward force was
insufficient to lift u off the obstacle 1. However, in certain problems this situation
cannot occur. The hypotheses of Lemma A.1 hold for classical problems (1.4) when
1 = 0, for the porous dam saturation free-boundary problem [2, for example], and for
the glacier problem in Section 6.

LEMMA A.1. Suppose that ¢ = 0 and ([v] = [, fvdx for f € L*(). Suppose
also that the operator F is given by measurable densities,

(A1) F(W)[v]:/Q¢(w(ﬂf)7Vw($))v(I)+‘I>(1U(I)’VW($))'Vv(x) dr,

satisfying $(0,0) = 0 and ®(0,0) = 0. Then for u solving VI (2.2), f <0 a.e. in A,.

Proof. Let S C A, be a Borel set, and denote its indicator function by ys €
L>(Q). By a density argument and the assumptions on ¢ and ®, the operator value
F(u)[xs] is well-defined, and zero, because S is in the active set. Thus by Lemma 2.3,

0 < dpul($) = Plalxs] ~ flxs] =0~ ls] = = [ fda.

This shows f < 0 a.e. with respect to Lebesgue measure.

DEFINITION A.2. For a unilateral obstacle problem (2.2) with source term {[v] =
Jo fvdz and f € C(), we say that the blistering property holds if A, C {z € Q :
f(x) <0} [22], that is, if the conclusion of Lemma A.1 holds.

To explain the language, if f(z) > 0 for some x € € then, assuming this property,
the inactive set I, must be non-empty, and « € I,,. That is, even a small upward
force “blisters” the membrane off the obstacle.

Any classical problem (1.4) with a smooth obstacle 1) € C2(Q) can be transformed
into one with the blistering property. Let & = v — 1, thus K = {fveXx o>
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0 and 9sn = g — Yloa}. Integration-by-parts shows (1.4) is equivalent to finding
u=1u— 1 € K so that

(A.2) /Qva-vw—a)zfg(f+v2w)(ﬁ—a) for all & € K.

For VI problem (A.2), if z € Az = {a(z) = 0} then f(z) = f(z) + V?(z) < 0.

For blistering-property problems, AMR costs can be reduced by systematically
avoiding refinement in the computed active sets. From a computed solution uy, one
identifies elements K € Tj, such that K C A”. (In our implementation we require that
every node in the closure of K is active, according to some tolerance.) The degenerate
case must be excluded, so we also require K C Q_ = {x € Q : f(z) < 0}; note this
uses only the data of the problem. Then for K C Q_ N A” no refinement is needed
if K is geometrically far from the free boundary. However, if later refinements move
the free boundary to be incident to K then refinement of K becomes appropriate.
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